Homework #13 Due April 23.

1. Does there exist a function \(f(z) \) that is holomorphic near the origin and that satisfies
 \[f(1/n) = f(-1/n) = \frac{1}{n^3}, \quad \text{for } n = 1, 2, \ldots ? \]
 Why or why not?

2. Suppose that
 \[f(z) = a_0 + a_1 z + a_2 z^2 + \ldots \quad \text{and} \]
 \[g(z) = b_{-2} z^{-2} + b_{-1} z^{-1} + b_0 + b_1 z + b_2 z^2 + \ldots, \]
 where the two series \(\sum_{n=0}^{\infty} a_n z^n \) and \(\sum_{n=0}^{\infty} b_n z^n \) converge for \(|z| < 2 \). Find \(\int_{\Gamma} f(z) g(z) \, dz \) in terms of \(a_n \) and \(b_n \), where \(\Gamma \) is the positively oriented unit circle.

3. (a) Prove that if \(f \) is a holomorphic map from the unit disk \(D = \{ z \mid |z| < 1 \} \) to itself with \(f(0) = 0 \), then \(|f(z)| \leq |z| \) for all \(z \in D \).
 (b) Which of these \(f \) admit a point \(a \neq 0 \) with \(|f(a)| = |a| \)?
 (c) Let \(g \) be a holomorphic map of the disk \(D \) to itself which is not the identity map of \(D \). Show that \(g \) can have at most one fixed point (i.e., a point \(a \in D \) with \(g(a) = a \)).

4. Suppose that \(f \) is a holomorphic function on \(\{ z \mid |z| < 3 \} \), and that \(f(0) = 0 \). Let \(M_R = \sup_{|z| \leq R} |f(z)| \), and \(N_R = \sup_{|z| \leq R} |f'(z)| \).
 (a) Estimate \(M_R \) (from above) in terms of \(N_R \).
 (b) Estimate \(N_R \) (from above) in terms of \(M_R \).

5. Let \(f \) be an analytic function such that \(f(z) = 1 + z + z^2 + \cdots \) for \(|z| < 1 \). Define a sequence of real numbers \(a_0, a_1, a_2, \ldots \) by
 \[f(z) = \sum_{n=0}^{\infty} a_n (z + 2)^n. \]
 What is the radius of convergence of this new series \(\sum_{n=0}^{\infty} a_n (z + 2)^n \)?

6. Prove that there is no one-to-one conformal map of the punctured disk \(G = \{ z \in \mathbb{C} \mid 0 < z < 1 \} \) onto the annulus \(A = \{ z \in \mathbb{C} \mid 1 < |z| < 2 \} \).