Math 211

Lecture #12

Euler’s Method

September 24, 2001
Numerical Methods

- A numerical “solution” is not a solution.
- It is a discrete approximation to a solution.
- We make an error on purpose to enable us to compute an approximation.
- Extremely important to understand the size of the error.
Numerical Approximation

To numerically “solve” \(y' = f(t, y) \) with \(y(a) = y_0 \) on the interval \([a, b]\), we find

- a discrete set of points
 \[a = t_0 < t_1 < t_2 < \cdots < t_{N-1} < t_N = b \]
- and values \(y_0, y_1, y_2, \ldots, y_{N-1}, y_N \)
 with \(y_j \) approximately equal to \(y(t_j) \).
- Making an error \(E_j = y(t_j) - y_j \).
Types of Solvers

- We will discuss four solvers
 - Euler’s method,
 - second order Runge-Kutta,
 - fourth order Runge-Kutta,
 - and ode45.
- Everything works for first order systems almost without change.
Euler’s Method

• Solve (approximately)

\[y' = f(t, y) \quad \text{with} \quad y(a) = y_0 \]

on the interval \([a, b]\).

• Discrete set of values of \(t\).

\[t_0 = a, \text{ fixed step size } h = (b - a)/N. \]

\[t_1 = t_0 + h, \quad t_2 = t_1 + h = t_0 + 2h, \text{ etc,} \]

\[t_N = a + Nh = b \]
Euler’s Method – First Step

- At each step approximate the solution curve by the tangent line.
- First step:
 - $y(t_0 + h) \approx y(t_0) + y'(t_0)h. \quad t_1 = t_0 + h$
 - $y(t_1) \approx y_0 + f(t_0, y_0)h.$
 - Set $y_1 = y_0 + f(t_0, y_0)h, \quad \text{so } y(t_1) \approx y_1.$
Euler’s Method – Second Step

- At each step use the tangent line.
- Second step – start at \((t_1, y_1)\).
 - New solution \(\tilde{y}\) with initial value \(\tilde{y}(t_1) = y_1\).
 - \(\tilde{y}(t) \approx \tilde{y}(t_1) + \tilde{y}'(t_1)(t - t_1), \quad t_2 = t_1 + h\)
 - \(\tilde{y}(t_2) \approx y_1 + f(t_1, y_1)h\).
 - Set \(y_2 = y_1 + f(t_1, y_1)h\), so \(y(t_2) \approx \tilde{y}(t_2) \approx y_2\).
Euler’s Method – Algorithm

Input \(t_0 \) and \(y_0 \).

for \(k = 1 \) to \(N \) set

\[
y_k = y_{k-1} + f(t_{k-1}, y_{k-1})h
\]

\[
t_k = t_{k-1} + h
\]

Thus,

\[
y_1 = y_0 + f(t_0, y_0)h \quad \text{and} \quad t_1 = t_0 + h
\]

\[
y_2 = y_1 + f(t_1, y_1)h \quad \text{and} \quad t_2 = t_1 + h
\]

\[
y_3 = y_2 + f(t_2, y_2)h \quad \text{and} \quad t_3 = t_2 + h
\]

etc.
MATLAB routine eulerdemo.m

- Demonstrates truncation error.
- Demonstrates how truncation error can propagate exponentially.
- Demonstrates how the total error is the sum of propagated truncation errors.
Error Analysis – First Step

- Euler’s approximation

\[y_1 = y_0 + f(t_0, y_0)h; \quad t_1 = t_0 + h \]

- Taylor’s theorem

\[y(t_1) = y(t_0 + h) = y(t_0) + y'(t_0)h + R(h) \]

\[|R(h)| \leq C h^2 \]

- \[y(t_1) - y_1 = R(h) \]
Error Analysis

- The truncation error at each step is the same as the Taylor remainder, and $|R(h)| \leq Ch^2$.
- There are $N = (b - a)/h$ steps. Truncation error can grow exponentially.

$$\text{Maximum error} \leq C \left(e^{L(b-a)} - 1 \right) h,$$

where C & L are constants that depend on f.
Error Analysis

Maximum error \(\leq C \left(e^{L(b-a)} - 1 \right) h, \)

where \(C \) & \(L \) are constants that depend on \(f \).

- Good news: the error decreases as \(h \) decreases.
- Bad news: the error can get exponentially large as the length of the interval [i.e., b-a] increases.
MATLAB routine eul.m

Syntax: \[[t,y] = eul(derfile,[t_0,t_f],y_0,h) \];

- \textit{derfile} - derivative m-file defining the equation.
- \(t_0 \) - initial time; \(t_f \) - final time.
- \(y_0 \) - initial value.
- \(h \) - step size.
Derivative m-file

The derivative m-file describes the differential equation.

• Example: \(y' = y^2 - t \)

• Derivative m-file:

```matlab
function ypr = george(t,y)
    ypr = y^2 - t;
end
```

• Save as george.m.
Use of eul.m

- Solve $y' = y^2 - t$.
- Use the derivative m-file george.m.
- Use $t_0 = 0$, $t_f = 10$, $y_0 = 0.5$, and several step sizes.
- Syntax: $[t,y] = eul('george',[0,10],0.5,h);$
Experimental Error Analysis

• IVP $y' = \cos(t)/(2y - 2)$ with $y(0) = 3$

• Exact solution: $y(t) = 1 + \sqrt{4 + \sin t}$.

• Solve using Euler’s method and compare with the exact solution.

• Do this for several step sizes.
Derivative m-file ben.m

function yprime = ben(t,y)

yprime = cos(t)/(2*y-2);
M-file batch.m

```
[teuler,yeuler]=eul('ben',[0,3],3,h);
t=0:0.05:3;
y=1+sqrt(4+sin(t));
plot(t,y,teuler,yeuler,'o')
legend('Exact','Euler')
shg
z=1+sqrt(4+sin(teuler));
maxerror=max(abs(z-yeuler))
```