Math 211

Lecture #20

Bases of a Subspace

October 12, 2001
Subspaces of \mathbb{R}^n

Definition: A nonempty subset V of \mathbb{R}^n that has the properties

1. if x and y are vectors in V, $x + y$ is in V,

2. if a is a scalar, and x is in V, then ax is in V,

is called a *subspace* of \mathbb{R}^n.

- The nullspace of a matrix is a subspace.
- We are looking for a good way to describe a subspace.
The Span of a Set of Vectors

In every example we have seen the subspace has been the set of all linear combinations of a few vectors.

Definition: The *span* of a set of vectors is the set of all linear combinations of those vectors. The span of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ is denoted by

$$\text{span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k).$$

Proposition: If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are all vectors in \mathbb{R}^n, then $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k)$ is a *subspace* of \mathbb{R}^n.
Linear Dependence in 2- & 3-D

We need a condition that will keep unneeded vectors out of a spanning list. We will work toward a general definition.

- Two vectors are *linearly dependent* if one is a scalar multiple of the other.
- Three vectors \(\mathbf{v}_1, \mathbf{v}_2, \) and \(\mathbf{v}_3 \) are *linearly dependent* if one is a linear combination of the other two.

 - Example: \(\mathbf{v}_1 = (1, 0, 0)^T, \mathbf{v}_2 = (0, 1, 0)^T, \) and \(\mathbf{v}_3 = (1, 2, 0)^T \)

 \[\mathbf{v}_3 = \mathbf{v}_1 + 2\mathbf{v}_2. \]

 - Notice that \(\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3 = 0. \)
Linear Dependence

- **Three vectors** are linearly dependent if there is a non-trivial linear combination of them which equals the zero vector.
 - Non-trivial means that at least one of the coefficients is not 0.

- A set of vectors is linearly dependent if there is a non-trivial linear combination of them which equals the zero vector.
Linear Independence

Definition: The vectors \mathbf{v}_1, \mathbf{v}_2, \ldots, and \mathbf{v}_k are *linearly independent* if the only linear combination of them which is equal to the zero vector is the one with all of the coefficients equal to 0.

- In symbols,

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = 0$$

$$\Rightarrow c_1 = c_2 = \cdots = c_k = 0.$$
Linear Independence?

How do we decide if a set of vectors is linearly independent? Are the vectors

\[\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ -3 \\ 2 \\ 0 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 5 \\ 0 \\ -4 \\ 6 \end{pmatrix} \]

linearly independent?
We look at linear combinations of the vectors

\[c_1v_1 + c_2v_2 + c_3v_3 = 0 \]

\[\Leftrightarrow [v_1, v_2, v_3]c = 0 \text{ where } c = (c_1, c_2, c_3)^T \]

\[\Leftrightarrow c \in \text{null}(v_1, v_2, v_3). \]

- \(c = (-3, 2, 1)^T \in \text{null}(v_1, v_2, v_3), \)
 \[\Rightarrow -3v_1 + 2v_2 + v_3 = 0. \]

- \(v_1, v_2, v_3 \) are linearly dependent.
Another Example

Are the vectors

$$v_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1 \\ -3 \\ 2 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 5 \\ 0 \\ -4 \\ 3 \end{pmatrix}$$

linearly independent?

- $\text{null}([v_1, v_2, v_3]) = \{0\}$.
- v_1, v_2, v_3 are linearly independent.
Proposition: Suppose that $v_1, v_2, \ldots, \text{and } v_k$ are vectors in \mathbb{R}^n. Set $V = [v_1, v_2, \ldots, v_k]$.

1. If $\text{null}(V) = \{0\}$, then $v_1, v_2, \ldots, \text{and } v_k$ are linearly independent.

2. If $c = (c_1, c_2, \ldots, c_k)^T$ is a nonzero vector in $\text{null}(V)$, then

 $$c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = 0,$$

 so the vectors are linearly dependent.
Basis of a Subspace

Definition: A set of vectors v_1, v_2, \ldots, v_k form a *basis* of a subspace V if

1. $V = \text{span}(v_1, v_2, \ldots, v_k)$

2. v_1, v_2, \ldots, v_k are **linearly independent**.
Examples of Bases

- The vector $\mathbf{v} = (1, -1, 1)^T$ is a basis for $\text{null}(A)$.
 - $\text{null}(A)$ is the subspace of \mathbb{R}^3 with basis \mathbf{v}.

- The vectors $\mathbf{v} = (1, -1, 1, 0)^T$ and $\mathbf{w} = (0, -2, 0, 1)^T$ form a basis for $\text{null}(B)$.
 - $\text{null}(B)$ is the subspace of \mathbb{R}^4 with basis $\{\mathbf{v}, \mathbf{w}\}$.
Basis of a Subspace

Proposition: Let V be a subspace of \mathbb{R}^n.

1. If $V \neq \{0\}$, then V has a basis.
2. Every basis of V has the same number of elements.

Definition: The *dimension* of a subspace V is the number of elements in a basis of V.
Example

Find the nullspace of

$$A = \begin{pmatrix} 3 & -3 & 1 & -1 \\ -2 & 2 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ 13 & -13 & 5 & -5 \end{pmatrix}.$$

- $\text{null}(A)$ is the subspace of \mathbb{R}^4 with basis $(1, 1, 0, 0)^T$ and $(0, 0, 1, -1)^T$.
- $\text{null}(A)$ has dimension 2.
Example 1

\[A = \begin{pmatrix} 4 & 3 & -1 \\ -3 & -2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \]

The nullspace of \(A \) is

\[\text{null}(A) = \{ av \mid a \in \mathbb{R} \}, \]

where \(v = (1, -1, 1)^T \).
Example 2

\[B = \begin{pmatrix}
4 & 3 & -1 & 6 \\
-3 & -2 & 1 & -4 \\
1 & 2 & 1 & 4
\end{pmatrix} \]

- \(\text{null}(B) = \{a\mathbf{v} + b\mathbf{w} \mid a, b \in \mathbb{R}\} \), where
 \(\mathbf{v} = (1, -1, 1, 0)^T \) and \(\mathbf{w} = (0, -2, 0, 1)^T \).
- \(\text{null}(B) \) consists of all linear combinations of \(\mathbf{v} \) and \(\mathbf{w} \).