Math 211
Lecture #31
Stability of Solutions
Higher Order Equations

November 9, 2001

Exponential of a Matrix
Definition: The exponential of the $n \times n$ matrix A is the $n \times n$ matrix

$$e^A = I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \cdots = \sum_{n=0}^{\infty} \frac{1}{n!} A^n.$$

Theorem: The solution to the initial value problem

$$x' = Ax \quad \text{with} \quad x(0) = v$$

is $x(t) = e^{tA}v$.

Computing $e^{tA}v$

- If λ is an eigenvalue and v is an associated eigenvector, then $e^{tA}v = e^{t\lambda}v$.
- If $(A - \lambda I)^p v = 0$ for some integer $p \geq 1$, then

$$e^{tA}v = e^{t\lambda} \left[v + t(A - \lambda) v + \frac{t^2}{2!} (A - \lambda)^2 v + \cdots + \frac{t^{p-1}}{(p-1)!} (A - \lambda)^{p-1} v \right].$$
Generalized Eigenvectors

Definition: If \(\lambda \) is an eigenvalue of \(A \) and
\[
(A - \lambda I)^p v = 0
\]
for some integer \(p \geq 1 \), then \(v \) is called a generalized eigenvector associated with \(\lambda \).

- We can compute \(e^{tA}v \) for all such \(v \).

Theorem: If \(\lambda \) is an eigenvalue of \(A \) with algebraic multiplicity \(q \), then there is an integer \(p \leq q \) such that
\[
\text{null}((A - \lambda I)^p)
\]
has dimension \(q \).

- We can find \(q \) linearly independent solutions associated with the eigenvalue \(\lambda \).

Procedure for \(\lambda \) of algebraic multiplicity \(q \)

To find \(q \) linearly independent solutions associated with \(\lambda \):
- Find the smallest integer \(p \) such that
\[
\text{null}((A - \lambda I)^p)
\]
has dimension \(q \).
- Find a basis \(v_1, v_2, \ldots, v_q \) of \(\text{null}((A - \lambda I)^p) \).
- For \(j = 1, 2, \ldots, q \)
\[
x_j(t) = e^{tA}v_j
= e^{tA} \left[v_j + t(A - \lambda I)v_j + \frac{t^2}{2!}(A - \lambda I)^2v_j + \cdots + \frac{t^{p-1}}{(p-1)!}(A - \lambda I)^{p-1}v_j \right]
\]

Example

- Use MATLAB.
Procedure for a Complex Eigenvalue

If λ is a complex eigenvalue of algebraic multiplicity q, then λ also has algebraic multiplicity q.

- Find the smallest integer p such that $\text{null}((A - \lambda I)^p)$ has dimension q.
- Find a basis w_1, w_2, \ldots, w_q of $\text{null}((A - \lambda I)^p)$.

- For $j = 1, 2, \ldots, q$ we have solutions
 \[z_j(t) = e^{\lambda t}w_j = e^{\lambda t} \left[w_j + t(A - \lambda I)w_j + \frac{t^2}{2!}(A - \lambda I)^2w_j + \cdots + \frac{t^{p-1}}{(p-1)!}(A - \lambda I)^{p-1}w_j \right] \]
- x_1, \ldots, x_q together with π_1, \ldots, π_q are $2q$ linearly independent complex valued solutions.
- For $j = 1, 2, \ldots, q$ set $x_j(t) = \text{Re}(z_j(t))$ and $y_j(t) = \text{Im}(z_j(t))$. These are $2q$ linearly independent real valued solutions.

Stability

Autonomous system $x' = f(x)$ with an equilibrium point at x_0.

- Basic question: What happens to all solutions as $t \to \infty$?
- x_0 is stable if for every $\epsilon > 0$ there is a $\delta > 0$ such that a solution $x(t)$ with $|x(0) - x_0| < \delta$ implies $|x(t) - x_0| < \epsilon$ for all $t \geq 0$.
- Every solution that starts close to x_0 stays close to x_0.
• x_0 is asymptotically stable if it is stable and there is an $\eta > 0$ such that if $x(t)$ is a solution with $|x(0) - x_0| < \eta$, then $x(t) \to x_0$ as $t \to \infty$.
 - x_0 is called a sink.
 - Every solution that starts close to x_0 approaches x_0.
• x_0 is unstable if there is an $\epsilon > 0$ such that for any $\delta > 0$ there is a solution $x(t)$ with $|x(0) - x_0| < \delta$ with the property that there are values of $t > 0$ such that $|x(t) - x_0| > \epsilon$.
 - There are solutions starting arbitrarily close to x_0 that move away from x_0.

Examples $D = 2$
• Sinks are asymptotically stable.
 - The eigenvalues have negative real part.
• Sources are unstable.
 - The eigenvalues have positive real part.
• Saddles are unstable.
 - One eigenvalue has positive real part.
• Centers are stable but not asymptotically stable.
 - The eigenvalues have real part $= 0$.

Theorem: Let A be an $n \times n$ real matrix.
• Suppose the real part of every eigenvalue of A is negative. Then 0 is an asymptotically stable equilibrium point for the system $x' = Ax$.
• Suppose A has at least one eigenvalue with positive real part. Then 0 is an unstable equilibrium point for the system $x' = Ax$.
Examples

- $D = 2$
- $T^2 - 4D = 0.$
 - $T < 0 \Rightarrow$ sink. $T > 0 \Rightarrow$ source.
- $y' = Ay,$

 $A = \begin{pmatrix}
 -2 & -18 & -7 & -14 \\
 1 & 6 & 2 & 5 \\
 2 & 2 & -3 & 0 \\
 -2 & -8 & -1 & -6
 \end{pmatrix}.$

- A has eigenvalues $-1, -2, & -1 \pm i.$
- 0 is asymptotically stable.

Higher Order Equations

$y^{(n)} + a_1y^{(n-1)} + \cdots + a_{n-1}y' + a_n y = 0$

- Second order: $y'' + py' + qy = 0.$
- Equivalent system: $x' = Ax,$ where

 $x = \begin{pmatrix} y \\ y' \end{pmatrix}$ and $A = \begin{pmatrix} 0 & 1 \\ -q & -p \end{pmatrix}.$

- A fundamental set of solutions for the system consists of two linearly independent solutions.

Linear Independence

Definition: Two functions $u(t)$ and $v(t)$ are linearly independent if neither is a constant multiple of the other.

- $u(t)$ and $v(t)$ are linearly independent solutions to $y'' + py' + qy = 0 \Rightarrow (u'') \& (v'')$ are linearly independent solutions to the equivalent system.
General Solution

Theorem: Suppose that $y_1(t)$ & $y_2(t)$ are linearly independent solutions to the equation

$$y'' + py' + qy = 0.$$

Then the general solution is

$$y(t) = C_1 y_1(t) + C_2 y_2(t).$$

Definition: A set of two linearly independent solutions is called a fundamental set of solutions.

Solutions to $y'' + py' + qy = 0$.

- Equivalent system: $x' = Ax$, where
 $$x = \begin{pmatrix} y \\ y' \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} 0 & 1 \\ -q & -p \end{pmatrix}.$$

- Look for exponential solutions $y(t) = e^{\lambda t}$.

- Characteristic equation: $\lambda^2 + p\lambda + q = 0$.

- Characteristic polynomial: $\lambda^2 + p\lambda + q$.

- Same for the 2nd order equation and the system.

Real Roots

- If λ is a root to the characteristic polynomial then $y(t) = e^{\lambda t}$ is a solution.

- If λ is a root to the characteristic polynomial of multiplicity 2, then $y_1(t) = e^{\lambda t}$ and $y_2(t) = te^{\lambda t}$ are linearly independent solutions.
Complex Roots

- If \(\lambda = \alpha + i\beta \) is a complex root of the characteristic equation, then so is \(\bar{\lambda} = \alpha - i\beta \).
- A complex valued fundamental set of solutions is
 \[z(t) = e^{\lambda t} \quad \text{and} \quad \bar{z}(t) = e^{\bar{\lambda} t}. \]
- A real valued fundamental set of solutions is
 \[x(t) = e^{\alpha t} \cos \beta t \quad \text{and} \quad y(t) = e^{\alpha t} \sin \beta t. \]

Examples

- \(y'' - 5y' + 6y = 0 \).
- \(y'' + 25y = 0 \).
- \(y'' + 4y' + 13y = 0 \).

Key to Computing \(e^{tA} \) or \(e^{tA}v \)

Suppose that \(A \) a \(n \times n \) matrix, and \(\lambda \) a number (an eigenvalue).

- \(A = \lambda I + (A - \lambda I); \{ \lambda I \ & A - \lambda I \ \text{commute.} \} \)
 \[
e^{tA} = e^{t(\lambda I + (A - \lambda I))} \\
 = e^{t\lambda I} \cdot e^{t(A - \lambda I)} \\
 = e^{t\lambda} \cdot e^{t(A - \lambda I)} \\
 = e^{t\lambda} \cdot \left[I + t(A - \lambda I) + \frac{t^2}{2!}(A - \lambda I)^2 + \cdots \right]
\]
Multiplicities

A an $n \times n$ matrix

- Distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.
- The characteristic polynomial is
 $$p(\lambda) = (\lambda - \lambda_1)^{q_1} (\lambda - \lambda_2)^{q_2} \cdots (\lambda - \lambda_k)^{q_k}.$$
- The algebraic multiplicity of λ_j is q_j.
- The geometric multiplicity of λ_j is d_j, the dimension of the eigenspace of λ_j.