Forced, Damped Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = A \cos \omega t \]

- Characteristic polynomial: \(P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2 \)
- General Solution
 \[x(t) = G(\omega)A \cos(\omega t - \phi) + x_h(t). \]
 - Transient term \(x_h(t) \) dies out exponentially.
 - Steady-state solution \(x_p(t) = G(\omega)A \cos(\omega t - \phi) \).
 - Gain: \(G(\omega) = 1/\sqrt{(\omega_0^2 - \omega^2)^2 + 4c^2}\omega^2} \).
 - Phase: \(\phi = \arccot \left((\omega_0^2 - \omega^2)/2c\omega \right) \).

Steady-State Solution

\[x_p(t) = G(\omega)A \cos(\omega t - \phi). \]

- The forcing function is \(A \cos \omega t \).
- The steady-state response is oscillatory.
 - The amplitude is \(G(\omega) \) times the amplitude of the forcing term.
 - The steady-state oscillation is at the forcing frequency.
 - There is a phase shift of \(\phi/\omega \).
Interacting Species

- Two species with populations x_1 & x_2.
- Interaction between the species can be helpful or detrimental.
- Basic model
 \[
 \begin{align*}
 x_1' &= r_1 x_1 \\
 x_2' &= r_2 x_2
 \end{align*}
 \]
- r_1 & r_2 are the reproductive rates.

Reproductive Rates

- If $x_2 = 0$ the reproductive rate for x_1 is
 \[
 r_1 = a_1 - b_1 x_1.
 \]
- $a_1 > 0 \Rightarrow$ natural growth.
- $a_1 < 0 \Rightarrow$ natural decline.
- $b_1 = 0$ Malthusian growth.
- $b_1 > 0$ logistic growth.

- If $x_2 > 0$ the reproductive rate for x_1 is
 \[
 r_1 = a_1 - b_1 x_1 + c_1 x_2.
 \]
- $c_1 > 0 \Rightarrow$ interaction is helpful to x_1.
- $c_1 < 0 \Rightarrow$ interaction is detrimental to x_1.
- The reproductive rate for x_2 is
 \[
 r_2 = a_2 - b_2 x_2 + c_2 x_1.
 \]
- The model for interacting species is
 \[
 \begin{align*}
 x_1' &= (a_1 - b_1 x_1 + c_1 x_2) x_1 \\
 x_2' &= (a_2 - b_2 x_2 + c_2 x_1) x_2
 \end{align*}
 \]
Predator Prey Model
Rabbits & foxes, fish & sharks, and cottony cushion scale insect & ladybird beetle.
• $F = \text{fish} \ & \ S = \text{sharks}$.
 \[
 F' = (a - bS)F \\
 S' = (-c + dF)S
 \]
 or
 \[
 F' = (a - eF - bS)F \\
 S' = (-c + dF)S
 \]
 \[a = 3, \ b = 3, \ c = 1, \ d = 3, \ e = 3.\]

Competing Species
Cattle and sheep.
• x_1 and x_2 competing for resources.
 \[
 x'_1 = (a_1 - b_1x_1 + c_1x_2)x_1 \\
 x'_2 = (a_2 - b_2x_2 + c_2x_1)x_2
 \]
 • $a_2 > 0, \ b_1 > 0, \ & \ c_1 < 0$
 • Example:
 \[
 x' = (5 - 2x - y)x \\
 y' = (7 - 2x - 3y)y
 \]

Linearization
The principal idea of differential calculus:
• Approximate nonlinear mathematical objects by linear ones.
• Example: Approximate the function $f(y)$ near y_0 by linear function.
 \[
 f(y_0 + h) = f(y_0) + f'(y_0)h + R(h)
 \]
 where \(\lim_{h \to 0} \frac{R(h)}{h} = 0 \).
 • The linear function is $L(h) = f(y_0) + f'(y_0)h$.
Linearization of an ODE

\[y' = f(y) \]

- Assume \(f(y_0) = 0 \) and \(f'(y_0) \neq 0 \).
- Set \(y = y_0 + u \). Get
 \[u' = f(y_0 + u) = f'(y_0)u + R(u) \]

- Approximate by the linear differential equation
 \[\tilde{u}' = f'(y_0)\tilde{u} \]

- If \(f'(y_0) \neq 0 \) the equilibrium point of the linearization at 0 has the same stability properties as that of the nonlinear equation at \(y_0 \).
 - \(f'(y_0) > 0 \Rightarrow y_0 \) is unstable.
 - \(f'(y_0) < 0 \Rightarrow y_0 \) is asymptotically stable.
- We can solve the linearization explicitly.

Linearization of a Planar System

\[x' = f(x, y) \]
\[y' = g(x, y) \]

- Assume \((x_0, y_0) \) is an equilibrium point, so
 \[f(x_0, y_0) = g(x_0, y_0) = 0 \]
We have by Taylor’s theorem
\[f(x_0 + u, y_0 + v) = \frac{\partial f}{\partial x}(x_0, y_0)u + \frac{\partial f}{\partial y}(x_0, y_0)v + R_f(u, v) \]
\[g(x_0 + u, y_0 + v) = \frac{\partial g}{\partial x}(x_0, y_0)u + \frac{\partial g}{\partial y}(x_0, y_0)v + R_g(u, v) \]
where \(R_f(u, v) \to 0 \) and \(R_g(u, v) \to 0 \)

- Set \(x = x_0 + u \) and \(y = y_0 + v \). The system becomes
 \[u' = \frac{\partial f}{\partial x}(x_0, y_0)u + \frac{\partial f}{\partial y}(x_0, y_0)v + R_f(u, v) \]
 \[v' = \frac{\partial g}{\partial x}(x_0, y_0)u + \frac{\partial g}{\partial y}(x_0, y_0)v + R_g(u, v) \]

Linearization at \((x_0, y_0) \)

\[\tilde{u}' = \frac{\partial f}{\partial x}(x_0, y_0)\tilde{u} + \frac{\partial f}{\partial y}(x_0, y_0)\tilde{v} \]
\[\tilde{v}' = \frac{\partial g}{\partial x}(x_0, y_0)\tilde{u} + \frac{\partial g}{\partial y}(x_0, y_0)\tilde{v} \]

- This is a linear system.
 - We can solve it explicitly.
 - Does it give information about the original nonlinear system?
Matrix Form of the Linearization

Set \(\mathbf{u} = (\tilde{u}, \tilde{v})^T \) and introduce the Jacobian matrix

\[
\mathbf{J} = \begin{pmatrix}
\frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \\
\frac{\partial g}{\partial x}(x_0, y_0) & \frac{\partial g}{\partial y}(x_0, y_0)
\end{pmatrix}
\]

- The linearization becomes \(\mathbf{u}' = \mathbf{J}\mathbf{u} \).

Theorem: Consider the planar system

\[
\begin{align*}
x' &= f(x, y) \\
y' &= g(x, y)
\end{align*}
\]

where \(f \) and \(g \) are continuously differentiable. Suppose that \((x_0, y_0)\) is an equilibrium point. If the linearization at \((x_0, y_0)\) has a generic equilibrium point at the origin, then the equilibrium point at \((x_0, y_0)\) is of the same type.

Generic Equilibrium Points

- Saddle, nodal source, nodal sink, spiral source, and spiral sink.
- All occupy large open subsets of the trace-determinant plane.
- Nongeneric types
 - Center and others. Occupy pieces of the boundaries.
Examples

- Predator prey
- Competing species
- Center

\[\begin{align*}
 x' &= y + \alpha x(x^2 + y^2) \\
 y' &= -x + \alpha y(x^2 + y^2)
\end{align*} \]