Math 211

Lecture #39

Invariant Sets

November 30, 2001

Review of Methods

Linearization at an equilibrium point

- \(y' = f(y) \) has an equilibrium point at \(y_0 \).
- The linearization \(u' = J(y_0)u \) has an equilibrium point at \(u = 0 \).
- The linearization can sometimes predict the behavior of solutions to the nonlinear system near the equilibrium point.
- The linearization gives only local information.

Theorem: Consider the planar system

\[
\begin{align*}
x' &= f(x, y) \\
y' &= g(x, y)
\end{align*}
\]

where \(f \) and \(g \) are continuously differentiable. Suppose that \((x_0, y_0) \) is an equilibrium point. If the linearization at \((x_0, y_0) \) has a generic equilibrium point at the origin, then the equilibrium point at \((x_0, y_0) \) is of the same type.
Theorem: Suppose that y_0 is an equilibrium point for $y' = f(y)$. Let J be the Jacobian of f at y_0.

1. Suppose that the real part of every eigenvalue of J is negative. Then y_0 is an asymptotically stable equilibrium point.

2. Suppose that J has at least one eigenvalue with positive real part. Then y_0 is an unstable equilibrium point.

Invariant Sets

Definition: A set S is (positively) invariant for the system $y' = f(y)$ if $y(0) = y_0 \in S$ implies that $y(t) \in S$ for all $t \geq 0$.

- Examples:
 - An equilibrium point.
 - Any solution curve.

Example — Competing Species

$$x' = (5 - 2x - y)x$$
$$y' = (7 - 2x - 3y)y$$

- The positive x- and y-axes are invariant.
- The positive quadrant is invariant.
- Populations should remain nonnegative.
- The set $S = \{(x, y) | 0 < x < 3, \ 0 < y < 3 \}$ is positively invariant.
Nullclines

\[x' = f(x, y) \]
\[y' = g(x, y) \]

Definition: The \(x \)-nullcline is the set defined by \(f(x, y) = 0 \). The \(y \)-nullcline is the set defined by \(g(x, y) = 0 \).

- Along the \(x \)-nullcline the vector field points up or down.
- Along the \(y \)-nullcline the vector field points left or right.

Competing Species

\[x' = (5 - 2x - y)x \]
\[y' = (7 - 2x - 3y)y \]

- The \(x \)-nullcline consists of the two lines \(x = 0 \) and \(2x + y = 5 \).
- The \(y \)-nullcline consists of the two lines \(y = 0 \) and \(2x + 3y = 7 \).
- The nullclines intersect at the equilibrium points.

- Two of the four regions in the positive quadrant defined by the nullclines are positively invariant.
- This information allows us to predict that all solutions in the positive quadrant \(\rightarrow (2, 1) \) as \(t \rightarrow \infty \).
Competing Species – 2nd Example

\[x' = (1 - x - y)x \]
\[y' = (4 - 7x - 3y)y \]

- The axes are invariant. The positive quadrant is invariant.
- The equilibrium point at \((1/4, 3/4)\) is a saddle point.
- Almost all solutions go to one of the nodal sinks \((0, 4/3)\) or \((1, 0)\).

Definition: The basin of attraction of a sink \(y_0\) consists of all points \(y\) such that the solution starting at \(y\) approaches \(y_0\) as \(t \to \infty\).

- In the example, the basins of attraction of the two sinks are separated by the stable orbits of the saddle point.
- The stable and unstable orbits of a saddle point are called separatrices. (Separatrices is the plural of separatrix.)

Summary

- Sometimes the understanding of invariant sets can help us understand the long-term behavior of all solutions.
- Nullclines can sometimes help us find informative invariant sets.
- None of this helps us understand the predator-prey system.