Math 211

Review for the Final Exam

December 8, 2002

The Final Exam

• The final will be comprehensive, covering material from the entire semester.
• The final will emphasize the material covered since the last exam.
• These slides will cover primarily the material covered since the last exam. They do not cover all of the material on the exam.
• Questions about any of the material of the course will be answered.

The Themes of the Course

• Modeling.
 • Population, finance, mixing, motion, vibrating spring, electrical circuits, ...
• Exact solutions.
 • Separable and linear equations in dimension 1.
 • Linear equations in higher dimension.
 ▶ Matrix algebra.
• Second order equations.
• Numerical solutions.
• Geometric analysis.
Solving $x' = Ax$

- A is an $n \times n$ matrix.
- Solution strategy: Look for a fundamental set of solutions, i.e., n linearly independent solutions.
- The function $x(t) = e^{At}v$ solves the initial value problem $x' = Ax$ with $x(0) = v$.
- Refined strategy: Compute $e^{At}v$ for n linearly independent vectors v.
 - Computing $e^{At}v$ is hard except for specially chosen vectors v.

Key to Computing $e^{At}v$

Suppose that A an $n \times n$ matrix, and λ a number (an eigenvalue). Then

$$e^{At}v = e^{\lambda t} \cdot e^{(A-\lambda I)v} = e^{\lambda t} \cdot [v + t(A - \lambda I)v + \frac{t^2}{2!}(A - \lambda I)^2v + \cdots]$$

- If λ is an eigenvalue and v is an associated eigenvector, then $(A - \lambda I)v = 0$, so $e^{At}v = e^{\lambda t}v$.
- If $(A - \lambda I)^2v = 0$, then $e^{At}v = e^{\lambda t}[v + t(A - \lambda I)v]$.

Generalized Eigenvectors

Definition: If λ is an eigenvalue of A and $(A - \lambda I)^p v = 0$ for some integer $p \geq 1$, then v is called a generalized eigenvector associated with λ.

- Then
 $$e^{At}v = e^{\lambda t} \left[v + t(A - \lambda I)v + \frac{t^2}{2!}(A - \lambda I)^2v + \cdots + \frac{t^{p-1}}{(p-1)!}(A - \lambda I)^{p-1}v \right]$$
- We can compute $e^{At}v$ for any generalized eigenvector.
Multiplicities

A an \(n \times n \) matrix with distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \).

- The characteristic polynomial has the form
 \[
p(\lambda) = (\lambda - \lambda_1)^{q_1}(\lambda - \lambda_2)^{q_2} \cdots (\lambda - \lambda_k)^{q_k}.
\]
- The algebraic multiplicity of \(\lambda_j \) is \(q_j \).
- \(q_1 + q_2 + \ldots + q_k = n \).
- The geometric multiplicity of \(\lambda_j \) is \(d_j \), the dimension of the eigenspace of \(\lambda_j \).
- \(1 \leq d_j \leq q_j \).
- There is an integer \(k_j \leq q_j \) for which \(\text{null}((A - \lambda_j I)^{k_j}) \) has dimension \(q_j \).

Procedure for Solving \(x' = Ax \)

- Find the eigenvalues of \(A \) and their algebraic multiplicities.
- For each eigenvalue \(\lambda \) with algebraic multiplicity \(q \):
 - Find the smallest integer \(k \) for which \(\text{null}((A - \lambda I)^k) \) has dimension \(q \).
 - Find a basis for \(\text{null}((A - \lambda I)^k) \).
 - For each vector \(v \) in the basis compute the solution \(x(t) = e^{\lambda t}v \).
- The set of all of these solutions is a fundamental set of solutions.

Replacing Complex Solutions with Real Solutions

- If \(A \) has complex eigenvalues, the fundamental set of solutions contains complex valued solutions.
- Complex solutions occur in complex conjugate pairs \(z(t) = x(t) + iy(t) \) and \(\bar{z}(t) = x(t) - iy(t) \).
- Replace \(z(t) \) and \(\bar{z}(t) \) with the real solutions \(x(t) = \text{Re}(z(t)) \) and \(y(t) = \text{Im}(z(t)) \).
Solutions to Higher Order Equations

Homogenous linear equation with constant coefficients:
\[y'' + py' + qy = 0 \]

- Look for exponential solutions \(y(t) = e^{\lambda t} \).
- Characteristic polynomial: \(\lambda^2 + p\lambda + q \).
- If \(\lambda \) is a root of the characteristic polynomial then \(y(t) = e^{\lambda t} \) is a solution.

Fundamental sets of solutions

- Two distinct real roots \(\lambda_1 \) and \(\lambda_2 \):
 \[y_1(t) = e^{\lambda_1 t} \quad \text{and} \quad y_2(t) = e^{\lambda_2 t}. \]
- One real root \(\lambda \) of multiplicity 2:
 \[y_1(t) = e^{\lambda t} \quad \text{and} \quad y_2(t) = te^{\lambda t}. \]
- Complex conjugate roots \(\lambda = \alpha \pm i\beta \):
 \[y_1(t) = e^{\alpha t} \cos \beta t \quad \text{and} \quad y_2(t) = e^{\alpha t} \sin \beta t. \]

Inhomogeneous Equations

\[y'' + py' + qy = f(t) \]

- The method of undetermined coefficients finds a particular solution \(y_p(t) \).
- The general solution is
 \[y(t) = y_p(t) + C_1 y_1(t) + C_2 y_2(t). \]

 where \(y_1 \) and \(y_2 \) are a fundamental set of solutions to the homogeneous equation.
- If the forcing term \(f(t) \) has a form which is replicated under differentiation, look for a particular solution of the same general form as the forcing term.
Cases

- If \(f(t) = Ce^{kt} \), try \(y_p(t) = ae^{kt} \).
- If \(f(t) = A \cos \omega t + B \sin \omega t \), try \(y_p(t) = a \cos \omega t + b \sin \omega t \).
 - Or try the complex method.
- If \(f(t) \) is a polynomial of degree \(n \), let \(y_p \) be a polynomial of degree \(n \).
- Exceptional cases: Multiply expected form of \(y_p \) by \(t \).
- Combination cases: Solve the equation in pieces.

Harmonic Motion

- Spring: \(y'' + \frac{2}{m}y' + \frac{1}{m^2}y = \frac{1}{m}F(t) \).
- Circuit: \(I'' + \frac{2R}{L}I' + \frac{1}{LC}I = \frac{1}{L}E'(t) \).
- Essentially the same equation. Use \(x'' + 2cx' + \omega_0^2 x = f(t) \).
 - We call this the equation for harmonic motion.
- \(\omega_0 \) is the natural frequency. \(c \) is the damping constant. \(f(t) \) is the forcing term.

Unforced Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = 0 \]

- Undamped: \(c = 0 \).
- Underdamped: \(0 < c < \omega_0 \).
- Critically damped: \(c = \omega_0 \).
- Over damped: \(c > \omega_0 \).
Forced Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = A \cos \omega t \]

- \(A \) is the forcing amplitude and \(\omega \) is the forcing frequency.
- The general solution is \(x(t) = x_p(t) + x_h(t) \).
 - \(x_p \) is a particular solution. \(x_h \) is the general solution of the homogenous equation.
- Undamped: \(c = 0 \).
 - \(\omega \neq \omega_0 \): Beats.
 - \(\omega = \omega_0 \): Resonance.

Forced, Damped Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = A \cos \omega t \]

- \(c > 0 \) implies that \(x_h(t) \to 0 \) as \(t \) increases, so \(x_h \) is called the transient term.
- \(x_p(t) \) is called the steady-state solution. It has the form
 \[x_p(t) = G(\omega)A \cos(\omega t - \phi) \]
 - \(x_p \) is oscillatory at the driving frequency.
 - The amplitude of \(x_p \) is the product of the gain, \(G(\omega) \), and the amplitude of the forcing function.
 - \(x_p \) has a phase shift of \(\phi \) with respect to the forcing function.

Qualitative Analysis

- Existence and uniqueness.
- For an autonomous system \(x' = f(x) \), the basic question is, What happens to all solutions as \(t \to \infty \)?
- The easy cases: equilibrium points \(f(x_0) = 0 \) and equilibrium solutions \(x(t) = x_0 \).
- Local qualitative analysis: What happens as \(t \to \infty \) to all solutions that start near an equilibrium point \(x_0 \)?
 - This is the question of stability.
- Global qualitative analysis: What happens to all solutions as \(t \to \infty \)?
Stability

Suppose the autonomous system $x' = f(x)$ has an equilibrium point at x_0.

- x_0 is stable if every solution that starts close to x_0 stays close to x_0.
- x_0 is asymptotically stable if every solution that starts close to x_0 stays near x_0 and approaches x_0 as $t \to \infty$.
- x_0 is called a sink.
- x_0 is unstable if there are solutions starting arbitrarily close to x_0 that move away from x_0.

Stability for $x' = Ax$

- $D = 2$: Trace-determinant plane.
- **Theorem:** Let A be an $n \times n$ real matrix.
 - Suppose the real part of every eigenvalue of A is negative. Then 0 is an asymptotically stable equilibrium point for the system $x' = Ax$.
 - Suppose A has at least one eigenvalue with positive real part. Then 0 is an unstable equilibrium point for the system $x' = Ax$.

Stability for $x' = f(x)$

- Suppose that x_0 is an equilibrium point.
- The **linearization** at x_0 is the system $u' = Ju$, where J is the Jacobian matrix of f at x_0.
- For the planar system $\begin{cases} x' = f(x, y) \\ y' = g(x, y) \end{cases}$, the Jacobian is
 \[
 J = \begin{pmatrix}
 \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \\
 \frac{\partial g}{\partial x}(x_0, y_0) & \frac{\partial g}{\partial y}(x_0, y_0)
 \end{pmatrix}
 \]
Stability for $D = 2$

Theorem: Consider the planar system

\[
x' = f(x, y) \\
y' = g(x, y)
\]

where f and g are continuously differentiable. Suppose that (x_0, y_0) is an equilibrium point. If the linearization at (x_0, y_0) has a generic equilibrium point at the origin, then the equilibrium point at (x_0, y_0) is of the same type.

Stability for $D \geq 1$

Theorem: Suppose that y_0 is an equilibrium point for $y' = f(y)$. Let J be the Jacobian of f at y_0.

1. Suppose that the real part of every eigenvalue of J is negative. Then y_0 is an asymptotically stable equilibrium point.

2. Suppose that J has at least one eigenvalue with positive real part. Then y_0 is an unstable equilibrium point.

Global Geometric Analysis

- What happens to all solutions as $t \to \infty$?
- The (forward) limit set of the solution $y(t)$ that starts at y_0 is the set of all limit points of the solution curve. It is denoted by $\omega(y_0)$.
 - $x \in \omega(y_0)$ if there is a sequence $t_k \to \infty$ such that $y(t_k) \to x$.
- What is $\omega(y_0)$ for all y_0?
 - What is the limit set for all solutions?
- In dimension 1, all limit sets are equilibrium points.
Limit Sets in Dimension 2

Theorem: If S is a nonempty limit set of a solution of a planar system defined in a set $U \subset \mathbb{R}^2$, then S is one of the following:

- An equilibrium point.
- A closed solution curve.
- A directed planar graph with vertices that are equilibrium points, and edges which are solution curves.

These are called the Poincaré-Bendixson alternatives.
- In dimension 3 the answer is unknown.

Invariant Sets

Definition: A set S is (positively) invariant for the system $y' = f(y)$ if $y(0) = y_0 \in S$ implies that $y(t) \in S$ for all $t \geq 0$.

- Examples include equilibrium points, and any solution curve.
- In dimension 2, invariant sets can frequently be found using:
 - nullclines,
 - polar coordinates.

Poincaré-Bendixson Theorem

Theorem: Suppose that R is a closed and bounded planar region that is positively invariant for a planar system. If R contains no equilibrium points, then there is a closed solution curve in R.

- The theorem is also true if the set R is negatively invariant.
- The closed solution curve might be a limit cycle.
Solving Separable Equations

\[\frac{dy}{dt} = g(y)h(t) \]

The three step solution process:
1. Separate the variables. \(\frac{dy}{g(y)} = h(t) \, dt \) if \(g(y) \neq 0 \).
2. Integrate both sides. \(\int \frac{dy}{g(y)} = \int h(t) \, dt \).
3. Solve for \(y(t) \).

Solving the Linear Equation

\[x' = a(t)x + f(t) \]

Four step process:
1. Rewrite as \(x' - ax = f \).
2. Multiply by the integrating factor
 \(u(t) = e^{-\int a(t) \, dt} \).
 Equation becomes \([ux]' = ux' - ax = uf \).
3. Integrate: \(u(t)x(t) = \int u(t)f(t) \, dt + C \).
4. Solve for \(x(t) \).

Eigenvalues and Eigenvectors

- \(\lambda \) is an eigenvalue of \(A \) if there is a nonzero vector \(v \) such that \(Av = \lambda v \). If \(\lambda \) is an eigenvalue of \(A \), then any vector \(v \) such that \(Av = \lambda v \) is called an eigenvector associated with \(\lambda \).
- \(\lambda \) is an eigenvalue of \(A \) \(\iff \) \(\det(A - \lambda I) = 0 \).
 - \(p(\lambda) = \det(A - \lambda I) \) is called the characteristic polynomial of \(A \).
- \(v \) is an eigenvector associated with the eigenvalue \(\lambda \) \(\iff \) \(v \in \text{null}(A - \lambda I) \).
 - \(\text{null}(A - \lambda I) \) is called the eigenspace of \(\lambda \).