Math 211

Review for the Final Exam

December 8, 2002
The Final Exam

- The final will be comprehensive, covering material from the entire semester.
- The final will emphasize the material covered since the last exam.
- These slides will cover primarily the material covered since the last exam. They do *not* cover all of the material on the exam.
- Questions about any of the material of the course will be answered.
The Themes of the Course

• Modeling.
 ♦ Population, finance, mixing, motion, vibrating spring, electrical circuits, . . .

• Exact solutions.
 ♦ Separable and linear equations in dimension 1.
 ♦ Linear equations in higher dimension.
 ▶ Matrix algebra.

• Second order equations.

• Numerical solutions.

• Geometric analysis.
Solving $x' = Ax$

- A is an $n \times n$ matrix.

- Solution strategy: Look for a fundamental set of solutions, i.e., n linearly independent solutions.

- The function $x(t) = e^{tA}v$ solves the initial value problem $x' = Ax$ with $x(0) = v$.

- Refined strategy: Compute $e^{tA}v$ for n linearly independent vectors v.

 - Computing $e^{tA}v$ is hard except for specially chosen vectors v.
Suppose that A an $n \times n$ matrix, and λ a number (an eigenvalue). Then

$$e^{tA}v = e^{\lambda t} \cdot e^{t(A-\lambda I)}v$$

$$= e^{\lambda t} \cdot [v + t(A - \lambda I)v + \frac{t^2}{2!}(A - \lambda I)^2v + \cdots]$$

- If λ is an eigenvalue and v is an associated eigenvector, then $(A - \lambda I)v = 0$, so $e^{tA}v = e^{\lambda t}v$.
- If $(A - \lambda I)^2v = 0$, then $e^{tA}v = e^{\lambda t}[v + t(A - \lambda I)v]$.
Generalized Eigenvectors

Definition: If \(\lambda \) is an eigenvalue of \(A \) and
\[(A - \lambda I)^p v = 0\]
for some integer \(p \geq 1 \), then \(v \) is called a generalized eigenvector associated with \(\lambda \).

* Then

\[e^{tA}v = e^{\lambda t} \left[v + t(A - \lambda I)v + \frac{t^2}{2!} (A - \lambda I)^2 v + \cdots + \frac{t^{p-1}}{(p-1)!} (A - \lambda I)^{p-1} v \right] \]

* We can compute \(e^{tA}v \) for any generalized eigenvector.
\section*{Multiplicities}

A an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.

- The characteristic polynomial has the form
 \[p(\lambda) = (\lambda - \lambda_1)^{q_1}(\lambda - \lambda_2)^{q_2} \cdots (\lambda - \lambda_k)^{q_k}. \]

- The \textit{algebraic multiplicity} of λ_j is q_j.
 \[q_1 + q_2 + \ldots + q_k = n. \]

- The \textit{geometric multiplicity} of λ_j is d_j, the dimension of the eigenspace of λ_j.
 \[1 \leq d_j \leq q_j. \]

- There is an integer $k_j \leq q_j$ for which $\text{null}((A - \lambda_j I)^{k_j})$ has dimension q_j.

Return Generalized eigenvectors Strategy
Procedure for Solving $x' = Ax$

- Find the eigenvalues of A and their algebraic multiplicities.

- For each eigenvalue λ with algebraic multiplicity q:
 - Find the smallest integer k for which $\text{null}((A - \lambda I)^k)$ has dimension q.
 - Find a basis for $\text{null}((A - \lambda I)^k)$.
 - For each vector v in the basis compute the solution $x(t) = e^{tA}v$.

- The set of all of these solutions is a fundamental set of solutions.
Replacing Complex Solutions with Real Solutions

- If \(A \) has complex eigenvalues, the **fundamental** set of solutions contains complex valued solutions.

- Complex solutions occur in complex conjugate pairs
 \[z(t) = x(t) + iy(t) \text{ and } \overline{z(t)} = x(t) - iy(t). \]

- Replace \(z(t) \) and \(\overline{z(t)} \) with the real solutions
 \[x(t) = \text{Re}(z(t)) \text{ and } y(t) = \text{Im}(z(t)). \]
Solutions to Higher Order Equations

Homogeneous linear equation with constant coefficients:

\[y'' + py' + qy = 0 \]

- Look for exponential solutions \(y(t) = e^{\lambda t} \).
- **Characteristic polynomial**: \(\lambda^2 + p\lambda + q \).
- If \(\lambda \) is a root of the characteristic polynomial then \(y(t) = e^{\lambda t} \) is a solution.
Fundamental sets of solutions

- Two distinct real roots λ_1 and λ_2:
 \[y_1(t) = e^{\lambda_1 t} \quad \text{and} \quad y_2(t) = e^{\lambda_2 t}. \]

- One real root λ of multiplicity 2:
 \[y_1(t) = e^{\lambda t} \quad \text{and} \quad y_2(t) = te^{\lambda t}. \]

- Complex conjugate roots $\lambda = \alpha \pm i\beta$:
 \[y_1(t) = e^{\alpha t} \cos \beta t \quad \text{and} \quad y_2(t) = e^{\alpha t} \sin \beta t. \]
Inhomogeneous Equations

\[y'' + Py' + Qy = f(t) \]

- The method of undetermined coefficients finds a particular solution \(y_p(t) \).
- The general solution is

\[y(t) = y_p(t) + C_1 y_1(t) + C_2 y_2(t), \]

where \(y_1 \) and \(y_2 \) are a fundamental set of solutions to the homogeneous equation.
- If the forcing term \(f(t) \) has a form which is replicated under differentiation, look for a particular solution of the same general form as the forcing term.
Cases

- If \(f(t) = Ce^{bt} \), try \(y_p(t) = ae^{bt} \).
- If \(f(t) = A \cos \omega t + B \sin \omega t \), try \(y_p(t) = a \cos \omega t + b \sin \omega t \).
 - Or try the complex method.
- If \(f(t) \) is a polynomial of degree \(n \), let \(y_p \) be a polynomial of degree \(n \).
- Exceptional cases: Multiply expected form of \(y_p \) by \(t \).
- Combination cases: Solve the equation in pieces.
Harmonic Motion

- Spring: $y'' + \frac{\mu}{m}y' + \frac{k}{m}y = \frac{1}{m}F(t)$.
- Circuit: $I'' + \frac{R}{L}I' + \frac{1}{LC}I = \frac{1}{L}E'(t)$.
- Essentially the same equation. Use
 \[x'' + 2cx' + \omega_0^2x = f(t). \]

- We call this the equation for harmonic motion.

- ω_0 is the natural frequency. c is the damping constant. $f(t)$ is the forcing term.
Unforced Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = 0 \]

- **Undamped**: \(c = 0 \).
- **Underdamped**: \(0 < c < \omega_0 \).
- **Critically damped**: \(c = \omega_0 \).
- **Over damped**: \(c > \omega_0 \).
Forced Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = A \cos \omega t \]

- \(A \) is the \textit{forcing amplitude} and \(\omega \) is the \textit{forcing frequency}.

- The \textit{general solution} is \(x(t) = x_p(t) + x_h(t) \).
 - \(x_p \) is a \textit{particular solution}. \(x_h \) is the \textit{general solution} of the homogenous equation.

- Undamped: \(c = 0 \).
 - \(\omega \neq \omega_0 \): Beats.
 - \(\omega = \omega_0 \): Resonance.
Forced, Damped Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = A \cos \omega t \]

- \(c > 0 \) implies that \(x_h(t) \to 0 \) as \(t \) increases, so \(x_h \) is called the \textit{transient term}.

- \(x_p(t) \) is called the \textit{steady-state solution}. It has the form

\[x_p(t) = G(\omega)A \cos(\omega t - \phi) \]

- \(x_p \) is oscillatory at the driving frequency.

- The amplitude of \(x_p \) is the product of the \textit{gain}, \(G(\omega) \), and the amplitude of the forcing function.

- \(x_p \) has a \textit{phase shift} of \(\phi \) with respect to the forcing function.
Qualitative Analysis

• Existence and uniqueness.

• For an autonomous system $x' = f(x)$, the basic question is, What happens to all solutions as $t \to \infty$?

• The easy cases: equilibrium points $f(x_0) = 0$ and equilibrium solutions $x(t) = x_0$.

• Local qualitative analysis: What happens as $t \to \infty$ to all solutions that start near an equilibrium point x_0?
 ♦ This is the question of stability.

• Global qualitative analysis: What happens to all solutions as $t \to \infty$?
Stability

Suppose the autonomous system \(x' = f(x) \) has an equilibrium point at \(x_0 \).

- \(x_0 \) is **stable** if every solution that starts close to \(x_0 \) stays close to \(x_0 \).

- \(x_0 \) is **asymptotically stable** if every solution that starts close to \(x_0 \) stays near \(x_0 \) and approaches \(x_0 \) as \(t \to \infty \).
 - \(x_0 \) is called a **sink**.

- \(x_0 \) is **unstable** if there are solutions starting arbitrarily close to \(x_0 \) that move away from \(x_0 \).
Stability for $x' = Ax$

- $D = 2$: Trace-determinant plane.

- **Theorem:** Let A be an $n \times n$ real matrix.

 - Suppose the real part of every eigenvalue of A is negative. Then 0 is an **asymptotically stable** equilibrium point for the system $x' = Ax$.

 - Suppose A has at least one eigenvalue with positive real part. Then 0 is an **unstable** equilibrium point for the system $x' = Ax$.
Stability for $x' = f(x)$

- Suppose that x_0 is an equilibrium point.
- The *linearization* at x_0 is the system $u' = Ju$, where J is the *Jacobian matrix* of f at x_0.
- For the planar system \[
\begin{align*}
x' &= f(x, y) \\
y' &= g(x, y)
\end{align*}
\] the Jacobian is

\[
J = \begin{pmatrix}
\frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \\
\frac{\partial g}{\partial x}(x_0, y_0) & \frac{\partial g}{\partial y}(x_0, y_0)
\end{pmatrix}
\]
Stability for $D = 2$

Theorem: Consider the planar system

\[
x' = f(x, y)\\
y' = g(x, y)
\]

where f and g are continuously differentiable. Suppose that (x_0, y_0) is an equilibrium point. If the linearization at (x_0, y_0) has a generic equilibrium point at the origin, then the equilibrium point at (x_0, y_0) is of the same type.
Stability for $D \geq 1$

Theorem: Suppose that y_0 is an equilibrium point for $y' = f(y)$. Let J be the Jacobian of f at y_0.

1. Suppose that the real part of every eigenvalue of J is negative. Then y_0 is an asymptotically stable equilibrium point.

2. Suppose that J has at least one eigenvalue with positive real part. Then y_0 is an unstable equilibrium point.
Global Geometric Analysis

- What happens to all solutions as $t \to \infty$?
- The (forward) limit set of the solution $y(t)$ that starts at y_0 is the set of all limit points of the solution curve. It is denoted by $\omega(y_0)$.
 - $x \in \omega(y_0)$ if there is a sequence $t_k \to \infty$ such that $y(t_k) \to x$.
- What is $\omega(y_0)$ for all y_0?
 - What is the limit set for all solutions?
- In dimension 1, all limit sets are equilibrium points.
Limit Sets in Dimension 2

Theorem: If S is a nonempty limit set of a solution of a planar system defined in a set $U \subset \mathbb{R}^2$, then S is one of the following:

- An equilibrium point.
- A closed solution curve.
- A directed planar graph with vertices that are equilibrium points, and edges which are solution curves.

These are called the *Poincaré-Bendixson alternatives*.

- In dimension 3 the answer is unknown.
Invariant Sets

Definition: A set S is *(positively) invariant* for the system $y' = f(y)$ if $y(0) = y_0 \in S$ implies that $y(t) \in S$ for all $t \geq 0$.

- Examples include equilibrium points, and any solution curve.
- In dimension 2, invariant sets can frequently be found using:
 - nullclines,
 - polar coordinants.
Poincaré-Bendixson Theorem

Theorem: Suppose that R is a closed and bounded planar region that is positively invariant for a planar system. If R contains no equilibrium points, then there is a closed solution curve in R.

- The theorem is also true if the set R is negatively invariant.
- The closed solution curve might be a limit cycle.
Solving Separable Equations

\[\frac{dy}{dt} = g(y)h(t) \]

The three step solution process:

1. Separate the variables. \(\frac{dy}{g(y)} = h(t) \, dt \) if \(g(y) \neq 0 \).

2. Integrate both sides. \(\int \frac{dy}{g(y)} = \int h(t) \, dt \)

3. Solve for \(y(t) \).
Solving the Linear Equation

\[x' = a(t)x + f(t) \]

Four step process:

1. Rewrite as \(x' - ax = f \).

2. Multiply by the integrating factor

\[
u(t) = e^{-\int a(t) \, dt}.\]

Equation becomes \([ux]' = ux' - aux = uf\).

3. Integrate: \(u(t)x(t) = \int u(t)f(t) \, dt + C \).

4. Solve for \(x(t) \).
Eigenvalues and Eigenvectors

• λ is an *eigenvalue* of A if there is a nonzero vector v such that $Av = \lambda v$. If λ is an eigenvalue of A, then any vector v such that $Av = \lambda v$ is called an *eigenvector associated with* λ.

• λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$.
 - $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial* of A.

• v is an eigenvector associated with the eigenvalue $\lambda \iff v \in \text{null}(A - \lambda I)$.
 - $\text{null}(A - \lambda I)$ is called the *eigenspace* of λ.