Math 211

Lecture #9

Qualitative Analysis

September 16, 2002

Uniqueness Theorem

Theorem: Suppose the function \(f(t, y) \) and its partial derivative \(\frac{\partial f}{\partial y} \) are continuous in the rectangle \(R \) in the \(ty \)-plane. Suppose that \((t_0, x_0) \in R \). Suppose that
\[
x' = f(t, x) \quad \text{and} \quad y' = f(t, y),
\]
and that
\[
x(t_0) = y(t_0) = x_0.
\]
Then as long as \((t, x(t)) \) and \((t, y(t)) \) stay in \(R \) we have
\[
x(t) = y(t).
\]

Theorem: Suppose \(f(t, y) \), \(\frac{\partial f}{\partial y} \) are continuous in the rectangle \(R \). Let
\[
M = \max_{(t,y) \in R} \left| \frac{\partial f}{\partial y}(t,y) \right|.
\]
Suppose that \((t_0, x_0) \) and \((t_0, y_0) \) both lie in \(R \), and
\[
x' = f(t, x), \quad x(t_0) = x_0 \quad \text{and} \quad y' = f(t, y), \quad y(t_0) = y_0.
\]
Then as long as \((t, x(t)) \) and \((t, y(t)) \) stay in \(R \) we have
\[
|x(t) - y(t)| \leq |x_0 - y_0|e^{M|t-t_0|}.
\]
Continuity in Initial Conditions

- Inequality: \(|x(t) - y(t)| \leq |x_0 - y_0|e^{Mt - t_0} - e^{Mt - t_0}.

- The good news:
 - By making sure that \(x_0\) and \(y_0\) are very close we can make the solutions \(x(t)\) and \(y(t)\) close for \(t\) in an interval containing \(t_0\).
 - Solutions are continuous in the initial conditions.

Sensitivity with Respect to Initial Conditions

- Inequality: \(|x(t) - y(t)| \leq |x_0 - y_0|e^{Mt - t_0} - e^{Mt - t_0}.

- The bad news:
 - As \(|t - t_0|\) increases the RHS grows exponentially.
 - Over long intervals in \(t\) the solutions can get very far apart. Solutions are sensitive to initial conditions.

Qualitative Analysis of Autonomous Equations

- Ways to discover the properties of solutions without solving the equation.
 - What happens to solutions \(y(t)\) as \(t \to \infty\).
 - Properties of autonomous equations, \(y' = f(y)\).
 - The direction field does not depend on \(t\).
 - Solution curves can be translated left and right to get other solution curves. i.e., if \(y(t)\) a solution so is \(y_1(t) = y(t + c)\) for any constant \(c\).
Equilibrium Points & Solutions

Autonomous equation: \(y' = f(y) \).

- Equilibrium point: \(f(y_0) = 0 \).
- Equilibrium solution: \(y(t) = y_0 \).

Example: \(y' = \sin y \)

\(\sin y = 0 \iff y = k\pi, \ k = 0, \pm 1, \ldots \)

\(y' = \sin y \) has infinitely many equilibrium solutions:

\(y_k(t) = k\pi \) for \(k = 0, \pm 1, \pm 2, \ldots \)

Between the Equilibrium Points

Example: \(y' = \sin y \).

\(0 < y < \pi \)

\(y'(t) = \sin y(t) > 0 \Rightarrow y(t) \) is increasing

- By uniqueness, \(0 < y(t) < \pi \) for all \(t \).
- \(\Rightarrow y(t) \searrow \pi \) as \(t \to \infty \) and \(y(t) \nearrow 0 \) as \(t \to -\infty \)

\(-\pi < y < 0 \)

\(y'(t) = \sin y(t) < 0 \Rightarrow y(t) \) is decreasing

- By uniqueness, \(0 > y(t) > -\pi \) for all \(t \).
- \(\Rightarrow y(t) \searrow -\pi \) as \(t \to \infty \) and \(y(t) \nearrow 0 \) as \(t \to -\infty \)

Stable & Unstable EPs

An equilibrium point \(y_0 \) is

- *asymptotically stable* if all solutions starting near \(y_0 \) converge to \(y_0 \) as \(t \to \infty \).
- *unstable* if there are solutions starting arbitrarily close to \(y_0 \) which move away from \(y_0 \) as \(t \) increases.

There are 4 possibilities:
A Phase Line for $y' = f(y)$

- A phase line is a y-axis, showing
 - the equilibrium points and
 - the direction of the flow between the equilibrium points.
- Examples:
 - The y-axis in the plot of $y \rightarrow f(y)$.
 - The y-axis in the ty-plane where solutions are plotted.

Example – Terminal Velocity

- Assume the magnitude of the resistance is proportional to the square of the velocity:
 \[v' = -g - k|v|v/m \]
- One equilibrium point at
 \[v_{\text{term}} = -\sqrt{mg/k}. \]
- v_{term} is asymptotically stable.

Qualitative Analysis of $y' = f(y)$.

1. Graph $y \rightarrow f(y)$.

![Graph of y → f(y)](image)
Qualitative Analysis of $y' = f(y)$.

2. Find the equilibrium points where $f(y) = 0$.

3. Determine the behavior between eq. pts.

4. Analyze the equilibrium points.
Qualitative Analysis of $y' = f(y)$.

5. Transfer the phase line to ty-space.

Qualitative Analysis of $y' = f(y)$.

6. Plot the equilibrium solutions.

Qualitative Analysis of $y' = f(y)$.

7. Plot other solutions approximately.
Seven Steps

1. Graph $y \rightarrow f(y)$.
2. Find the equilibrium points where $f(y) = 0$.
3. Determine the behavior between eq. pts.
4. Analyze the equilibrium points.
5. Transfer the phase line to fy-space.
6. Plot the equilibrium solutions.
7. Plot other solutions approximately.