Math 211

Lecture #14

MATLAB’s ODE Solvers

September 27, 2002
MATLAB has several solvers.

- **ode45**
 - This is the first choice.
- **ode23**
- **Stiff solvers**
 - **ode15s**
ode45

- Uses variable step size.
 - Specify error tolerance instead of step size.
 - MATLAB chooses the step size at each step to achieve the limit on the error.
 - The default tolerance is good enough for this course.

- Syntax

 \[
 [t, y] = \text{ode45}(\text{derfile}, [t_0, t_f], y_0);
 \]

 \[
 \text{plot}(t, y)
 \]
Solving Systems

- Example:

\[x' = v \]
\[v' = -9.8 - 0.04v|v| \]

- Change to vector notation. (Use MATLAB vector notation)

\[u(1) = x \]
\[u(2) = v \]
function upr = ball(t,u)

x = u(1);

v = u(2);

xpr = v;

vpr = -9.8 - 0.04*v*abs(v);

upr = [xpr; vpr];
Derivative m-file `ballshort.m`

```matlab
function upr = ballshort(t,u)

upr = zeros(2,1);
upr(1) = u(2);
upr(2) = -9.8 - 0.04*u(2)*abs(u(2));
```
Computing and Plotting Solutions to Systems

- \[[t,u] = \text{ode45(}'\text{ball}',[0,3],[0;50])); \]
- \(\text{plot}(t,u) \) – plots all of the components versus \(t \).
- \(\text{plot}(t,u(:,1)) \) – first component versus \(t \).
- \(\text{plot}(u(:,1),u(:,2)) \) – second component versus the first. This is a *phase plane plot*.
- \(\text{plot3}(u(:,1),u(:,2),t) \) – 3-D plot.
Solving Higher Order Equations

• Reduce to a first order system and solve the system.

• Example: The motion of a pendulum is modeled by

\[\theta'' = -\frac{g}{L} \sin \theta - D\theta'. \]

• Introduce \(\omega = \theta' \). Notice

\[\omega' = -\frac{g}{L} \sin \theta - D\theta'. \]
Equivalent First Order System

\[\theta' = \omega \]
\[\omega' = -\frac{g}{L} \sin \theta - D\omega \]

- Change to vector notation. (Use MATLAB vector notation)
 - \(u(1) = \theta \)
 - \(u(2) = \omega \)
Derivative m-file pend.m

function upr = pend(t,u)

L = 1;
global D
th = u(1);
om = u(2);
thpr = om;
ompr = -(9.8/L)*sin(th) - D*om;
upr = [thpr; ompr];