Math 211

Lecture #25

Exponential Solutions

October 25, 2002
Homogeneous Systems

- These are systems of the form

 \[x' = Ax, \]

 where \(A \) is an \(n \times n \) matrix.

- We are looking primarily at homogeneous systems with constant coefficients.
Structure of the Solution Space

Theorem: Suppose that $x_1(t), x_2(t), \ldots, \text{and } x_n(t)$ are linearly independent solutions to the $n \times n$ homogeneous system $x' = Ax$ on the interval I. Then every solution is a linear combination of $x_1(t), x_2(t), \ldots, \text{and } x_n(t)$.

That is, if $x(t)$ is a solution, then there are constants $C_1, C_2, \ldots, \text{and } C_n$ such that

$$x(t) = C_1 x_1(t) + C_2 x_2(t) + \cdots + C_n x_n(t).$$
Solution Strategy

- The obvious strategy for completely solving the system is to look for \(n \) linearly independent solutions.

Definition: A set of \(n \) linear independent solutions to the \(n \times n \) homogeneous system \(x' = Ax \) is called a fundamental set of solutions.

- We will look for fundamental sets of solutions.
Exponential Solutions to $\mathbf{x}' = A\mathbf{x}$

- Look for solution of the form $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$, where \mathbf{v} is a vector with constant entries.

- Substituting we get

$$\begin{align*}
\mathbf{x}' &= \lambda e^{\lambda t} \mathbf{v} \\
A\mathbf{x} &= e^{\lambda t} A\mathbf{v}
\end{align*}$$

- Hence $\mathbf{x}' = A\mathbf{x} \iff A\mathbf{v} = \lambda \mathbf{v}$

- If $A\mathbf{v} = \lambda \mathbf{v}$ then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution.

- Can we find λ and \mathbf{v} such that $A\mathbf{v} = \lambda \mathbf{v}$?
Definition: \(\lambda \) is an eigenvalue of \(A \) if there is a nonzero vector \(v \) such that \(Av = \lambda v \). If \(\lambda \) is an eigenvalue of \(A \), then any vector \(v \) such that \(Av = \lambda v \) is called an eigenvector associated with \(\lambda \).

- If \(\lambda \) an eigenvalue of \(A \), and \(v \) is an associated nonzero eigenvector, then \(x(t) = e^{\lambda t}v \) is a solution to \(x' = Ax \).

 ♦ Thus we have a way to find some solutions to systems with constant coefficients.

- How do we find eigenvalues and eigenvectors?
Finding Eigenvalues

\(\lambda \) is an eigenvalue of \(A \)

\(\iff \) there is a vector \(v \neq 0 \) such that \(Av = \lambda v \).

\(\iff \) \(v \neq 0 \) and \(0 = Av - \lambda v \)

\[= Av - \lambda I v \]

\[= (A - \lambda I)v \]

\(\iff \) \(A - \lambda I \) has a nontrivial nullspace.

\(\iff \) \(\text{det}(A - \lambda I) = 0 \).
Example

\[A = \begin{pmatrix} -4 & 2 \\ -3 & 1 \end{pmatrix} \]

\[A - \lambda I = \begin{pmatrix} -4 - \lambda & 2 \\ -3 & 1 - \lambda \end{pmatrix} \]

\[\det(A - \lambda I) = (-4 - \lambda)(1 - \lambda) + 6 \]

\[= \lambda^2 + 3\lambda + 2 \]

\[= (\lambda + 1)(\lambda + 2) \]

- \(A \) has eigenvalues \(\lambda_1 = -1 \) and \(\lambda_2 = -2 \).
The Characteristic Polynomial

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \]

\[A - \lambda I = \begin{pmatrix}
 a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda
\end{pmatrix} \]
• If A is an $n \times n$ matrix $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n.

Definition: The *characteristic polynomial* of the $n \times n$ matrix A is

$$p(\lambda) = \det(A - \lambda I).$$

The *characteristic equation* is $p(\lambda) = 0$.

• Thus, the *eigenvalues* of A are the roots of the characteristic equation.
Our Solution Strategy for $x' = Ax$

If A is $n \times n$, we are looking for n linearly independent solutions.

- Each eigenvalue λ of A has by definition an associated nonzero eigenvector v. This gives us the solution, $x(t) = e^{\lambda t} v$.

- The eigenvalues of A are the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I) = 0$.
 - $p(\lambda)$ has degree n, and usually has n roots.

- Therefore, there are usually n different solutions.
 - Are they linearly independent?
Finding Eigenvectors

\(\mathbf{v} \) is an eigenvector associated with the eigenvalue \(\lambda \) if

\[
A\mathbf{v} = \lambda \mathbf{v}
\]

\[\Leftrightarrow (A - \lambda I)\mathbf{v} = \mathbf{0}\]

\[\Leftrightarrow \mathbf{v} \in \text{null}(A - \lambda I)\]

- The set of all eigenvectors associated to the eigenvalue \(\lambda \) is equal to the nullspace of \(A - \lambda I \).
 - It is a subspace of \(\mathbb{R}^n \).
 - It is called the eigenspace of \(\lambda \).
Example: \(A = \begin{pmatrix} -4 & 2 \\ -3 & 1 \end{pmatrix} \)

\(A \) has eigenvalues \(\lambda_1 = -1 \) and \(\lambda_2 = -2 \).

- \(\lambda_1 = -1 \): \(A - \lambda_1 I = \begin{pmatrix} -4 + 1 & 2 \\ -3 & 1 + 1 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ -3 & 2 \end{pmatrix} \)

 \(\mathbf{v}_1 = (2, 3)^T \) is an eigenvector.

 \(\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1 = e^{-t} (2, 3)^T \) is a solution.

- \(\lambda_2 = -2 \): \(A - \lambda_2 I = \begin{pmatrix} -4 + 2 & 2 \\ -3 & 1 + 2 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ -3 & 3 \end{pmatrix} \)

 \(\mathbf{v}_2 = (1, 1)^T \) is an eigenvector.

 \(\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2 = e^{-2t} (1, 1)^T \) is a solution.
Example (cont.)

- \(x_1(0) = v_1 \) and \(x_2(0) = v_2 \) are linearly independent.
- \(x_1 \) and \(x_2 \) form a fundamental set of solutions.
- The general solution is the set of all linear combinations:

\[
x(t) = C_1 x_1(t) + C_2 x_2(t)
\]

\[
= C_1 e^{-t} \begin{pmatrix} 2 \\ 3 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} 2C_1 e^{-t} + C_2 e^{-2t} \\ 3C_1 e^{-t} + C_2 e^{-2t} \end{pmatrix}
\]
Procedure to Solve $x' = Ax$

- Find the eigenvalues of A, which are the roots of $\det(A - \lambda I) = 0$.
- For each eigenvalue λ find the eigenspace, which is equal to $\text{null}(A - \lambda I)$.
- If λ is an eigenvalue and v is an associated nonzero eigenvector, $x(t) = e^{\lambda t}v$ is a solution.
- Show that n of these are linearly independent, if we can.

- This must be explored further.
Solving $x' = Ax$

Cases to be Considered

- Distinct real eigenvalues.
 - In this case the method works as described.

- Complex eigenvalues.
 - The method yields complex solutions, but we will want real solutions.

- Repeated eigenvalues.
 - The method does not always give enough solutions.
 - This is the hard case.
Planar System $x' = Ax$

$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and $x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$

In nonvector form

$x'_1 = a_{11} x_1 + a_{12} x_2$

$x'_2 = a_{21} x_1 + a_{22} x_2$
The Characteristic Polynomial

\[p(\lambda) = \det(A - \lambda I) \]

\[= \det \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} \]

\[= \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) \]

\[= \lambda^2 - T\lambda + D, \]

where

- \(D = a_{11}a_{22} - a_{12}a_{21} = \det(A) \)
- \(T = a_{11} + a_{22} = \text{tr}(A) \) is the trace of \(A \).

- The trace of a matrix is the sum of its diagonal elements.
The Eigenvalues of A

- The eigenvalues of A are the roots of the characteristic equation $p(\lambda) = \lambda^2 - T\lambda + D = 0$.

\[\lambda = \frac{T \pm \sqrt{T^2 - 4D}}{2}. \]

- Three cases:
 - 2 distinct real roots if $T^2 - 4D > 0$
 - 2 complex conjugate roots if $T^2 - 4D < 0$
 - Double real root if $T^2 - 4D = 0$
Eigenvectors are Linearly Independent

The problem of determining that solutions are linearly independent is eased by the following result.

Proposition: Suppose that $\lambda_1 \neq \lambda_2$ are eigenvalues of the $n \times n$ matrix A, and that $v_1 \neq 0$ and $v_2 \neq 0$ are eigenvectors associated with λ_1 and λ_2, respectively. Then v_1 and v_2 are linearly independent.
Two Distinct Real Eigenvalues

\[\lambda_1 = \frac{T - \sqrt{T^2 - 4D}}{2}, \quad \lambda_2 = \frac{T + \sqrt{T^2 - 4D}}{2} \]

- \(T^2 - 4D > 0 \) so \(\lambda_1 < \lambda_2 \).
- There are associated nonzero eigenvectors \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \).
- Solutions \(\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1 \) and \(\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2 \).
- \(\mathbf{x}_1(0) = \mathbf{v}_1 \) and \(\mathbf{x}_2(0) = \mathbf{v}_2 \) are linearly independent; \(\mathbf{x}_1(t) \) and \(\mathbf{x}_2(t) \) form a fundamental set of solutions.
- The general solution is \(\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2 \).
Example

\[x' = Ax \quad \text{where} \quad A = \begin{pmatrix} -6 & -8 \\ 4 & 6 \end{pmatrix} \]

- **Characteristic polynomial**: \(p(\lambda) = \lambda^2 - 4 \).

- **Eigenvalues**: \(\lambda_1 = -2 \) and \(\lambda_2 = 2 \).

 - \(\lambda_1 = -2 \). **Eigenvector**: \(\mathbf{v}_1 = (-2, 1)^T \).

 \(\quad \Rightarrow \) **Solution**: \(x_1(t) = e^{\lambda_1 t} \mathbf{v}_1 = e^{-2t}(-2, 1)^T \).

 - \(\lambda_2 = 2 \). **Eigenvector**: \(\mathbf{v}_2 = (-1, 1)^T \).

 \(\quad \Rightarrow \) **Solution**: \(x_2(t) = e^{\lambda_2 t} \mathbf{v}_2 = e^{2t}(-1, 1)^T \).
• \(x_1 \) and \(x_2 \) are a **fundamental set** of solutions.

• The general solution is

\[
x(t) = C_1 x_1(t) + C_2 x_2(t)
\]

\[
= C_1 e^{-2t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
\]
Initial Value Problem

Solve $x' = Ax$ with the initial condition $x(0) = (1, 4)^T$.

- We need

$$x(0) = C_1 x_1(0) + C_2 x_2(0)$$

- $C_1 = -5$ and $C_2 = 9$.

- The solution is

$$x(t) = -5x_1(t) + 9x_2(t) = \begin{pmatrix} 10e^{-2t} - 9e^{2t} \\ -5e^{-2t} + 9e^{2t} \end{pmatrix}.$$
Homogeneous Systems

\[x' = Ax \]

Proposition: Suppose that \(x_1(t) \), \(x_2(t) \), \(\ldots \), and \(x_k(t) \) are solutions to the homogeneous system, and \(c_1 \), \(c_2 \), \(\ldots \), and \(c_k \) are scalars. Then

\[x(t) = c_1 x_1(t) + c_2 x_2(t) + \cdots + c_k x_k(t) \]

is also a solution.

- Any linear combination of solutions to the homogeneous system is also a solution.
Linear Independence

Definition: A set of k solutions to the linear system $x' = Ax$ is *linearly independent* if they are linearly independent at one value of t.

- Proposition \Rightarrow the solutions are linearly independent for all values of t.