Planar System $\mathbf{x}' = A\mathbf{x}$

- Equilibrium points for the system
- Set of equilibrium points equals $\text{null}(A)$.
- A nonsingular \Rightarrow only equilibrium point is 0.
- Can we list the types of all possible equilibrium points for planar linear systems?
 - We will do the six most important cases.
 - Look at solution curves in the phase plane.

Distinct Real Eigenvalues

- $p(\lambda) = \lambda^2 - T\lambda + D$ with $T^2 - 4D > 0$.
 $$\lambda_1 = \frac{T - \sqrt{T^2 - 4D}}{2} < \lambda_2 = \frac{T + \sqrt{T^2 - 4D}}{2}$$
- Eigenvectors \mathbf{v}_1 and \mathbf{v}_2. General solution
 $$\mathbf{x}(t) = C_1 e^{\lambda_1 t}\mathbf{v}_1 + C_2 e^{\lambda_2 t}\mathbf{v}_2$$
 - $\lambda_1 < 0 < \lambda_2$ Saddle point.
 - $\lambda_1 < \lambda_2 < 0$ Nodal sink.
 - $0 < \lambda_1 < \lambda_2$ Nodal source.
Complex Eigenvalues

- \(p(\lambda) = \lambda^2 - T\lambda + D \) with \(T^2 - 4D < 0 \)
 \[\lambda = \alpha + i\beta \quad \text{and} \quad \bar{\lambda} = \alpha - i\beta. \]

- Eigenvector \(\mathbf{w} = \mathbf{v}_1 + i\mathbf{v}_2 \) associated to \(\lambda \).
- General solution
 \[\mathbf{x}(t) = C_1 e^{\alpha t} \left[\cos \beta t \cdot \mathbf{v}_1 - \sin \beta t \cdot \mathbf{v}_2 \right]
 + C_2 e^{\alpha t} \left[\sin \beta t \cdot \mathbf{v}_1 + \cos \beta t \cdot \mathbf{v}_2 \right] \]

- \(\alpha = \text{Re}(\lambda) = 0 \) Center.
- \(\alpha = \text{Re}(\lambda) < 0 \) Spiral sink.
- \(\alpha = \text{Re}(\lambda) > 0 \) Spiral source.

Planar Systems

\[\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]

- The characteristic polynomial is \(p(\lambda) = \lambda^2 - T\lambda + D \).
 where
 - \(T = \text{tr} \mathbf{A} = a_{11} + a_{22} \) and
 - \(D = \det \mathbf{A} = a_{11}a_{22} - a_{12}a_{21} \).
- The eigenvalues are
 \[\lambda_1, \lambda_2 = \frac{T \pm \sqrt{T^2 - 4D}}{2} \]

- \(\lambda_1 \) and \(\lambda_2 \) are the roots of \(p(\lambda) = \lambda^2 - T\lambda + D \), so
 \[p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2 \]
- Hence, \(T = \lambda_1 + \lambda_2 \) and \(D = \lambda_1\lambda_2 \).
- Duality between \(\lambda_1, \lambda_2 \) and \(T, D \).
- We will represent a system by the location of \((T, D) \) in the \(TD \)-plane — the trace-determinant plane.
Trace-Determinant Plane

- $T^2 - 4D > 0$
 - \Rightarrow distinct real eigenvalues λ_1 and λ_2
 - $D = \lambda_1\lambda_2 < 0 \Rightarrow$ Saddle point.
 - $D = \lambda_1\lambda_2 > 0 \Rightarrow$ Eigenvalues have the same sign.
 - $T = \lambda_1 + \lambda_2 > 0 \Rightarrow$ Nodal source.
 - $T = \lambda_1 + \lambda_2 < 0 \Rightarrow$ Nodal sink.

- $T^2 - 4D < 0 \Rightarrow$ complex eigenvalues
 - $\lambda = \alpha + i\beta$ and $\bar{\lambda} = \alpha - i\beta$.
 - $T = \lambda + \bar{\lambda} = 2\alpha > 0 \Rightarrow$ Spiral source.
 - $T = \lambda + \bar{\lambda} = 2\alpha < 0 \Rightarrow$ Spiral sink.
 - $T = \lambda + \bar{\lambda} = 2\alpha = 0 \Rightarrow$ Center.

Types of Equilibrium Points

- Generic types
 - Saddle, nodal source, nodal sink, spiral source, and spiral sink.
 - All occupy large open subsets of the trace-determinant plane.

- Nongeneric types
 - Center and many others. Occupy pieces of the boundaries between the generic types.
Higher Dimensional Systems

\[x' = Ax \]

- \(A \) is a real \(n \times n \) matrix.
- If \(\lambda \) is an eigenvalue and \(v \not= 0 \) is an associated eigenvector, then
 \[x(t) = e^{\lambda t}v \]
 is a solution.
- Much like the planar case, but now we need \(n \) linearly independent solutions.
- We no longer have the easy way to compute the characteristic polynomial
 \(p(\lambda) = \det(A - \lambda I) \).

Proposition: Suppose that \(\lambda_1, \ldots, \lambda_k \) are distinct eigenvalues of \(A \), and that \(v_1, \ldots, v_k \) are associated nonzero eigenvectors. Then \(v_1, \ldots, v_k \) are linearly independent.

Theorem: Suppose the \(n \times n \) real matrix \(A \) has \(n \) distinct eigenvalues \(\lambda_1, \ldots, \lambda_n \), and that \(v_1, \ldots, v_n \) are associated nonzero eigenvectors. Then the exponential solutions
\[x_i(t) = e^{\lambda_i t}v_i, \quad 1 \leq i \leq n \]
form a fundamental set of solutions for the system \(x' = Ax \).

Examples:
- \(A = \begin{pmatrix} -2 & 3 & -4 \\ 0 & 1 & 0 \\ 0 & 4 & -1 \end{pmatrix} \)
- \(A = \begin{pmatrix} 17 & -30 & -8 \\ 16 & -29 & -8 \\ -12 & 24 & 7 \end{pmatrix} \)
- Use MATLAB.
Complex Eigenvalues

A real $n \times n$ matrix with a complex eigenvalue λ and associate eigenvector w.

- $\Rightarrow \overline{\lambda}$ is an eigenvalue and \overline{w} is an associated nonzero eigenvector.

- Complex valued solutions: $x(t) = e^{\lambda t}w$
 $\overline{x}(t) = e^{\overline{\lambda} t}\overline{w}$.

- Real solutions: $x(t) = \text{Re}(x(t))$
 $y(t) = \text{Im}(x(t))$.

Example

$$A = \begin{pmatrix} 21 & 10 & 4 \\ -70 & -31 & -10 \\ 30 & 10 & -1 \end{pmatrix}$$

- The theorem applies if some of the eigenvalues are complex and we replace complex conjugate pairs of solutions by their real and imaginary parts.

Repeated Eigenvalues – Example 1

$$A = \begin{pmatrix} -5 & -10 & 6 \\ 8 & 19 & -12 \\ 12 & 30 & -19 \end{pmatrix}$$

- $p(\lambda) = (\lambda + 3)(\lambda + 1)^2$
- $\lambda_1 = -3$
 - Eigenspace has dimension 1 \Rightarrow one exponential solution
 $$x_1(t) = e^{-3t}(-1/3, 2/3, 1)^T$$
• $\lambda_2 = -1$
 • Eigenspace has dimension 2 \Rightarrow two linearly independent exponential solutions
 • Eigenspace has basis $v_2 = (-5/2, 1, 0)^T$ and $v_3 = (3/2, 0, 1)^T$.
 • Linearly independent solutions
 \[
 x_2(t) = e^{-t} \begin{pmatrix} -5/2 \\ 1 \\ 0 \end{pmatrix} \quad \& \quad x_3(t) = e^{-t} \begin{pmatrix} 3/2 \\ 0 \\ 1 \end{pmatrix}
 \]
 • x_1, x_2, and x_3 are a fundamental set of solutions.

Repeated Eigenvalues – Example 2

\[
A = \begin{pmatrix} 1 & 2 & -1 \\ -4 & -7 & 4 \\ -4 & -4 & 1 \end{pmatrix}
\]

• $p(\lambda) = (\lambda + 3)(\lambda + 1)^2$
 • $\lambda_1 = -3$
 • Eigenspace has dimension 1 \Rightarrow one exponential solution
 \[
 x_1(t) = e^{-3t}(-1/2, 3/2, 1)^T
 \]

• $\lambda_2 = -1$
 • Eigenspace has dimension 1 \Rightarrow only one exponential solution
 \[
 x_2(t) = e^{-t} \begin{pmatrix} -1/2 \\ 1 \\ 1 \end{pmatrix}
 \]
 • Need a third solution.
 • Need a new idea.
Multiplicities

A $n \times n$ matrix

- Distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.
- The characteristic polynomial is

 $$p(\lambda) = (\lambda - \lambda_1)^{q_1}(\lambda - \lambda_2)^{q_2} \cdots (\lambda - \lambda_k)^{q_k}.$$

- The algebraic multiplicity of λ_j is q_j.
- The geometric multiplicity of λ_j is d_j, the dimension of the eigenspace of λ_j.

We always have:

- $q_1 + q_2 + \cdots + q_k = n$.
- $1 \leq d_j \leq q_j$.
- There are d_j linearly independent exponential solutions corresponding to λ_j.
- If $d_j = q_j$ for all j we have n linearly independent solutions.
- If $d_j < q_j$ we have trouble.