Math 211

Lecture #30

The Exponential of a Matrix

November 6, 2002
Repeated Eigenvalues – Example 1

\[
A = \begin{pmatrix}
-5 & -10 & 6 \\
8 & 19 & -12 \\
12 & 30 & -19
\end{pmatrix}
\]

- \(p(\lambda) = (\lambda + 3)(\lambda + 1)^2 \)
- \(\lambda_1 = -3 \) : Eigenspace has dimension 1, with basis \(v_1 \), so there is one exponential solution, \(x_1(t) = e^{\lambda_1 t}v_1 \).
- \(\lambda_2 = -1 \) : Eigenspace has dimension 2 with basis \(v_2 \) and \(v_3 \), so there are two linearly independent exponential solutions \(x_2(t) = e^{\lambda_2 t}v_2 \) and \(x_3(t) = e^{\lambda_2 t}v_3 \).
- \(x_1, x_2, \) and \(x_3 \) are a fundamental set of solutions.
Repeated Eigenvalues – Example 2

\[A = \begin{pmatrix} 1 & 2 & -1 \\ -4 & -7 & 4 \\ -4 & -4 & 1 \end{pmatrix} \]

- \[p(\lambda) = (\lambda + 3)(\lambda + 1)^2 \]
- \(\lambda_1 = -3 \): Eigenspace has dimension 1. There is one exponential solution \(x_1(t) = e^{-3t}(-1/2, 3/2, 1)^T \).
- \(\lambda_2 = -1 \): Eigenspace has dimension 1. There is only one exponential solution \(x_2(t) = e^{-t}(-1/2, 1, 1)^T \).
- We need a third solution. We need a new idea.
Multiplicities

A an $n \times n$ matrix

- Distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.
- The characteristic polynomial factors as
 \[p(\lambda) = (\lambda - \lambda_1)^{q_1} (\lambda - \lambda_2)^{q_2} \cdots (\lambda - \lambda_k)^{q_k}. \]
- The \textit{algebraic multiplicity} of λ_j is q_j.
- The \textit{geometric multiplicity} of λ_j is d_j, the dimension of the eigenspace of λ_j.
• We always have:

 • \(q_1 + q_2 + \cdots + q_k = n. \)

 • \(1 \leq d_j \leq q_j. \)

 • There are \(d_j \) linearly independent exponential solutions corresponding to \(\lambda_j. \)

 • If \(d_j = q_j \) for all \(j \) we have \(n \) linearly independent solutions.

 • If \(d_j < q_j \) we have trouble.
New Approach

- \(D = 1 : x' = ax \)
 - Solution \(x(t) = Ce^{at}. \)

- \(D > 1 : x' = Ax \)
 - Tried \(x(t) = e^{\lambda t}v. \)
 - Worked well except when eigenvalues have multiplicity greater than 1.
 - Why not \(x(t) = e^{tA}v? \)

- But what is \(e^{tA}? \)
Exponential of a Matrix

Definition: The *exponential* of the $n \times n$ matrix A is the $n \times n$ matrix

\[
e^A = I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \cdots
\]

\[
= \sum_{0}^{\infty} \frac{1}{n!} A^n.
\]

Examples:

- $A = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix} \Rightarrow e^A = \begin{pmatrix} e^{r_1} & 0 \\ 0 & e^{r_2} \end{pmatrix}$.
- $e^{\lambda I} = e^{\lambda I}$. $e^{0 I} = I$.
Properties

- A commutes with e^A,

$$Ae^A = e^A A.$$

- If A and B commute (i.e., $AB = BA$), then

$$e^{A+B} = e^A \cdot e^B.$$

- The inverse of e^A is e^{-A}.

- $\frac{d}{dt} e^{tA} = Ae^{tA}$.
A Very Important Fact

Theorem: The solution to the initial value problem

\[x' = Ax \text{ with } x(0) = v \]

is given by \(x(t) = e^{tA}v \).

- However computing \(e^{tA} \) is not easy.
Suppose that A an $n \times n$ matrix, and λ a number (an eigenvalue).

- Then $A = \lambda I + (A - \lambda I)$, and λI & $A - \lambda I$ commute. Therefore

 $$e^{tA} = e^{t[\lambda I+(A-\lambda I)]}$$

 $$= e^{t\lambda I} \cdot e^{t(A-\lambda I)}$$

 $$= e^{\lambda t} \cdot e^{t(A-\lambda I)}$$

 $$= e^{\lambda t} \cdot [I + t(A - \lambda I) + \frac{t^2}{2!} (A - \lambda I)^2 + \cdots]$$
\[e^{tA}v, \; v \text{ an Eigenvector} \]

Let \(\lambda \) be an eigenvalue and \(v \) an associated eigenvector. Then \((A - \lambda I)v = 0\), so

\[e^{tA}v = e^{\lambda t} \cdot e^{t(A-\lambda I)}v \]

\[= e^{\lambda t}[I + t(A - \lambda I) + \frac{t^2}{2!}(A - \lambda I)^2 + \cdots]v \]

\[= e^{\lambda t}[v + t(A - \lambda I)v + \frac{t^2}{2!}(A - \lambda I)^2v + \cdots] \]

\[= e^{\lambda t}v \]

- The infinite series truncates, so we can compute \(e^{tA}v \).
Matrices with One Eigenvalue

A has characteristic polynomial \(p(\lambda) = (\lambda - \lambda_1)^n \).

- **Cayley-Hamilton Theorem:** If \(p(\lambda) \) is the characteristic polynomial of the matrix \(A \) then \(p(A) = 0I \).

- In our case \((A - \lambda_1 I)^n = 0I\), so

\[
e^{tA} = e^{\lambda_1 t} \cdot [I + t(A - \lambda_1 I) + \frac{t^2}{2!}(A - \lambda_1 I)^2 + \cdots + \frac{t^{n-1}}{(n-1)!}(A - \lambda_1 I)^{n-1}]
\]
Example 3

\[A = \begin{pmatrix} -3 & 1 \\ -1 & -1 \end{pmatrix} \]

- \[p(\lambda) = (\lambda + 2)^2. \]

\[A + 2I = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \quad (A + 2I)^2 = 0I \]

\[e^{tA} = e^{-2t}[I + t(A + 2I)] \]

\[= e^{-2t} \begin{pmatrix} 1 - t & t \\ -t & 1 + t \end{pmatrix}. \]
Example 4

\[A = \begin{pmatrix} 0 & -9 & 27 \\ -2 & 3 & -18 \\ -1 & 3 & -12 \end{pmatrix} \]

- \(p(\lambda) = (\lambda + 3)^3 \). \((A + 3I)^2 = 0I \).

\[
e^{tA} = e^{-3t}[I + t(A + 3I)]
\]

\[
= e^{-3t} \begin{pmatrix} 1 + 3t & -9t & 27t \\ -2t & 1 + 6t & -18t \\ -t & 3t & 1 - 9t \end{pmatrix}.
\]
Example 2, Reprise

• Distinct eigenvalues $\lambda_1 = -3 \& \lambda_2 = -1$

• Different from previous two examples.

• $\lambda_1 = -3$ has algebraic multiplicity 1, and geometric multiplicity 1. So there is one exponential solution

$$x_1(t) = e^{\lambda_1 t}v_1 = e^{-3t}(-1/2, 3/2, 1)^T.$$

• $\lambda_2 = -1$ has algebraic multiplicity 2, and geometric multiplicity 1. So there is only one exponential solution

$$x_2(t) = e^{\lambda_2 t}v_2 = e^{-t}(-1/2, 1, 1)^T.$$
• However, \(\text{null}((A - \lambda_2 I)^2) \) has dimension 2, with basis \((0, 1, 1)^T\) and \((1, 0, 0)^T\). If \(\mathbf{v} \in \text{null}((A - \lambda_2 I)^2) \) then

\[
e^{tA}\mathbf{v} = e^{\lambda_2 t}[I + t(A - \lambda_2 I) + \frac{t^2}{2!}(A - \lambda_2 I)^2 + \cdots] \mathbf{v}
\]

\[
= e^{\lambda_2 t}[\mathbf{v} + t(A - \lambda_2 I)\mathbf{v}].
\]

• \(\mathbf{v}_2 \) is in \(\text{null}((A - \lambda_2 I)^2) \)

• Using \(\mathbf{v}_3 = (1, 0, 0)^T \) we get the third solution

\[
x_3(t) = e^{tA}\mathbf{v}_3 = e^{-t}[\mathbf{v}_3 + t(A + I)\mathbf{v}_3]
\]

\[
= e^{-t}(1 + 2t, -4t, -4t)^T.
\]

• \(x_1, x_2, \) and \(x_3 \) are a fundamental set of solutions.
Summary

• In Examples 3 & 4 the matrix has one eigenvalue.
 ♦ The series for $e^{t(A-\lambda I)}$ truncates to a finite sum.

• In Example 2 the matrix had two eigenvalues.
 ♦ The series for $e^{t(A-\lambda I)}$ does not truncate for any λ.
 ♦ However, the series for $e^{t(A-\lambda_2 I)}\mathbf{v}$ does truncate if $(A - \lambda_2 I)^2\mathbf{v} = 0$.
Generalized Eigenvectors

Definition: If \(\lambda \) is an eigenvalue of \(A \) and
\[
(A - \lambda I)^p v = 0
\]
for some integer \(p \geq 1 \), then \(v \) is called a generalized eigenvector associated with \(\lambda \).

- The series for \(e^{t(A - \lambda I)} v \) truncates to a finite sum if \(v \) is a generalized eigenvector associated with \(\lambda \).
- We can compute \(e^{tA} v \).
Theorem: If λ is an eigenvalue of A with algebraic multiplicity q, then there is an integer $p \leq q$ such that $\text{null}((A - \lambda I)^p)$ has dimension q.

- For each generalized eigenvector v we can compute $e^{tA}v$.
- We can find q linearly independent solutions associated with the eigenvalue λ.
Procedure for λ of algebraic multiplicity q

To find q linearly independent solutions associated with λ:

- Find the smallest integer p such that $\text{null}((A - \lambda I)^p)$ has dimension q.
- Find a basis v_1, v_2, \ldots, v_q of $\text{null}((A - \lambda I)^p)$.
- For $j = 1, 2, \ldots, q$

\[x_j(t) = e^{tA}v_j \]

\[= e^{\lambda t}[v_j + t(A - \lambda I)v_j + \frac{t^2}{2!}(A - \lambda I)^2v_j \]

\[+ \cdots + \frac{t^{p-1}}{(p-1)!}(A - \lambda I)^{p-1}v_j] \]
Example

- Use MATLAB.
Procedure for a Complex Eigenvalue

If λ is complex of algebraic multiplicity q. Then $\bar{\lambda}$ also has multiplicity q.

- Find the smallest integer p such that $\text{null}((A - \lambda I)^p)$ has dimension q.
- Find a basis w_1, w_2, \ldots, w_q of $\text{null}((A - \lambda I)^p)$.
- For $j = 1, 2, \ldots, q$
 \[z_j(t) = e^{tA}w. \]
For $j = 1, 2, \ldots, q$

\[
z_j(t) = e^{\lambda t} \left[w_j + t(A - \lambda I)w_j + \frac{t^2}{2!} (A - \lambda I)^2 w_j + \cdots + \frac{t^{p-1}}{(p-1)!} (A - \lambda I)^{p-1} w_j \right]
\]

For $j = 1, 2, \ldots, q$ set

\[
x_j(t) = \text{Re}(z_j(t)) \quad \text{and} \quad y_j(t) = \text{Im}(z_j(t)).
\]