Math 211

Lecture #31
Exponential of a Matrix
Stability of Solutions

November 8, 2002

Exponential of a Matrix

Definition: The exponential of the $n \times n$ matrix A is the $n \times n$ matrix

$$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots = \sum_{n=0}^{\infty} \frac{1}{n!}A^n.$$

Theorem: The solution to the initial value problem

$$x' = Ax \quad \text{with} \quad x(0) = v$$

is $x(t) = e^{tA}v$.

- Can we compute $e^{tA}v$ for enough vectors to find a fundamental set of solutions?

Key to Computing e^{tA} or $e^{tA}v$

Suppose that A an $n \times n$ matrix, and λ a number (an eigenvalue). Then

$$e^{tA} = e^{t\lambda} \cdot [I + t(A - \lambda I) + \frac{t^2}{2!}(A - \lambda I)^2 + \cdots]$$

$$e^{tA}v = e^{t\lambda} \cdot [v + t(A - \lambda I)v + \frac{t^2}{2!}(A - \lambda I)^2v + \cdots]$$

- If λ is an eigenvalue and v is an associated eigenvector, then $e^{tA}v = e^{t\lambda}v$.
- If $(A - \lambda I)^2v = 0$, then $e^{tA}v = e^{t\lambda}v + t(A - \lambda I)v$.
Example 2, Reprise

\[A = \begin{pmatrix} 1 & 2 & -1 \\ -4 & -7 & 4 \\ -4 & -4 & 1 \end{pmatrix} \]

- \(p(\lambda) = (\lambda + 3)(\lambda + 1)^2 \)
- \(\lambda_1 = -3 \), with algebraic multiplicity 1.
 - \(\text{null}(A - \lambda_1 I) \) has basis \(v_1 = (-1/2, 3/2, 1)^T \), so the geometric multiplicity is 1.
 - There is one exponential solution
 \[x_1(t) = e^{\lambda_1}v_1 = e^{-3}(-1/2, 3/2, 1)^T. \]

- \(\lambda_2 = -1 \), with algebraic multiplicity 2.
 - \(\text{null}(A - \lambda_2 I) \) has basis \(v_2 = (-1/2, 1, 1)^T \), so the geometric multiplicity is 1.
 - So there is only one exponential solution
 \[x_2(t) = e^{\lambda_2}v_2 = e^{-t}(-1/2, 1, 1)^T. \]
 - However, \(\text{null}((A - \lambda_2 I)^2) \) has dimension 2, with basis \((0, 1, 1)^T\) and \((1, 0, 0)^T\). With \(v_3 = (1, 0, 0)^T \) we get the third solution
 \[x_3(t) = e^{\lambda_3}v_3 = e^{-t}[v_3 + t(A + I)v_3] \]
 \[= e^{-t}(1 + 2t, -4t, -4t)^T. \]
- \(x_1, x_2, \) and \(x_3 \) are a fundamental set of solutions.

Generalized Eigenvectors

Definition: If \(\lambda \) is an eigenvalue of \(A \) and \((A - \lambda I)^p v = 0 \) for some integer \(p \geq 1 \), then \(v \) is called a generalized eigenvector associated with \(\lambda \).

Then
\[e^{tA}v = e^{\lambda t} \left[v + t(A - \lambda I)v + \frac{t^2}{2!}(A - \lambda I)^2v \right. \]
\[+ \cdots + \frac{t^{p-1}}{(p-1)!}(A - \lambda I)^{p-1}v \]

- We can compute \(e^{tA}v \) for any generalized eigenvector.
Solution Strategy

Theorem: If \(\lambda \) is an eigenvalue of \(A \) with algebraic multiplicity \(q \), then there is an integer \(p \leq q \) such that \(\text{null}((A - \lambda I)^p) \) has dimension \(q \).

- Thus, we can find \(q \) linearly independent solutions associated with the eigenvalue \(\lambda \).
- Since the sum of the algebraic multiplicities is \(n \), we can find a fundamental set of solutions.

Procedure for Solving \(x' = Ax \)

- Find the eigenvalues of \(A \).
- For each eigenvalue \(\lambda \):
 - Find the algebraic multiplicity \(q \).
 - Find the smallest integer \(p \) such that \(\text{null}((A - \lambda I)^p) \) has dimension \(q \).
 - Find a basis \(v_1, v_2, \ldots, v_q \) of \(\text{null}((A - \lambda I)^p) \).
 - For \(j = 1, 2, \ldots, q \), set \(x_j(t) = e^{tA}v_j \).
 - If \(\lambda \) is complex, find real solutions.

Examples

- Use MATLAB.
Procedure for a Complex Eigenvalue

If λ is a complex eigenvalue of algebraic multiplicity q.
Then λ also has algebraic multiplicity q.

- Find the smallest integer p such that $\text{null}((A - \lambda I)^p)$ has dimension q.
- Find a basis w_1, w_2, \ldots, w_q of $\text{null}((A - \lambda I)^p)$.
- For $j = 1, 2, \ldots, q$, set $z_j(t) = e^{t \lambda} w_j$, z_1, \ldots, z_q.
Together with z_j, z_1, \ldots, z_q, these are $2q$ linearly independent complex valued solutions.
- For $j = 1, 2, \ldots, q$, set $x_j(t) = \text{Re}(z_j(t))$ and $y_j(t) = \text{Im}(z_j(t))$. These are $2q$ linearly independent real valued solutions.

Stability

Autonomous system $x' = f(x)$ with an equilibrium point at x_0.

- Basic question: What happens to all solutions as $t \to \infty$?
- x_0 is stable if for every $\epsilon > 0$ there is a $\delta > 0$ such that a solution $x(t)$ with $|x(0) - x_0| < \delta \Rightarrow |x(t) - x_0| < \epsilon$ for all $t \geq 0$.
- Every solution that starts close to x_0 stays close to x_0.

- x_0 is asymptotically stable if it is stable and there is an $\eta > 0$ such that if $x(t)$ is a solution with $|x(0) - x_0| < \eta$, then $x(t) \to x_0$ as $t \to \infty$.
- x_0 is called a sink.
- Every solution that starts close to x_0 approaches x_0.
- x_0 is unstable if there is an $\epsilon > 0$ such that for any $\delta > 0$ there is a solution $x(t)$ with $|x(0) - x_0| < \delta$ with the property that there are values of $t > 0$ such that $|x(t) - x_0| > \epsilon$.
- There are solutions starting arbitrarily close to x_0 that move away from x_0.
Examples $D = 2$

- Sinks are asymptotically stable.
 - The eigenvalues have negative real part.
- Sources are unstable.
 - The eigenvalues have positive real part.
- Saddles are unstable.
 - One eigenvalue has positive real part.
- Centers are stable but not asymptotically stable.
 - The eigenvalues have real part $= 0$.

Theorem: Let A be an $n \times n$ real matrix.

- Suppose the real part of every eigenvalue of A is negative. Then 0 is an asymptotically stable equilibrium point for the system $x' = Ax$.
- Suppose A has at least one eigenvalue with positive real part. Then 0 is an unstable equilibrium point for the system $x' = Ax$.

Examples

- $D = 2$
 - $T^2 - 4D = 0$.
 - $T < 0 \Rightarrow$ sink. $T > 0 \Rightarrow$ source.
 - $y' = Ay$,
 $$A = \begin{pmatrix} -2 & -18 & -7 & -14 \\ 1 & 6 & 2 & 5 \\ 2 & 2 & -3 & 0 \\ -2 & -8 & -1 & -6 \end{pmatrix}.$$
 - A has eigenvalues -1, -2, & $-1 \pm i$.
 - 0 is asymptotically stable.
Multiplicities

An $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.

- The characteristic polynomial has the form
 $$p(\lambda) = (\lambda - \lambda_1)^{q_1}(\lambda - \lambda_2)^{q_2} \cdots (\lambda - \lambda_k)^{q_k}.$$

- The algebraic multiplicity of λ_j is q_j.
- The geometric multiplicity of λ_j is d_j, the dimension of the eigenspace of λ_j.
- $q_1 + q_2 + \ldots + q_k = n$.
- $1 \leq d_j \leq q_j$.

\[\text{\copyright John C. Polking}\]