Math 211

Lecture #35

Forced Harmonic Motion

November 18, 2002
Forced Harmonic Motion

Assume an oscillatory forcing term:

\[y'' + 2cy' + \omega_0^2 y = A \cos \omega t \]

- \(A \) is the forcing amplitude
- \(\omega \) is the forcing frequency
- \(\omega_0 \) is the natural frequency.
- \(c \) is the damping constant.
Forced Undamped Motion

\[y'' + \omega_0^2 y = A \cos \omega t, \quad \text{where} \quad \omega \neq \omega_0 \]

- The solution with initial conditions \(x(0) = x'(0) = 0 \):

\[x(t) = \frac{A}{\omega_0^2 - \omega^2} [\cos \omega t - \cos \omega_0 t] = \frac{A \sin \delta t}{2\omega \delta} \sin \bar{\omega} t, \]

where \(\bar{\omega} = \frac{\omega_0 + \omega}{2} \) and \(\delta = \frac{\omega_0 - \omega}{2} \).

- This is a fast oscillation at frequency \(\bar{\omega} \), with amplitude oscillating slowly with frequency \(\delta \).

- This phenomenon is called “beats.”
Forced Undamped Motion (cont.)

\[y'' + \omega_0^2 y = A \cos \omega_0 t, \quad \text{where} \quad \omega = \omega_0 \]

- An exceptional case.
- Solution with initial conditions \(x(0) = x'(0) = 0 \):
 \[x_p(t) = \frac{A}{2\omega_0} t \sin \omega_0 t. \]
- The output is an oscillation with increasing amplitude.
- First example of resonance.
 - Forcing at the natural frequency can cause oscillations that grow out of control.
Forced, Damped Harmonic Motion

\[x'' + 2cx' + \omega_0^2 x = A \cos \omega t \]

Use the complex method.

- Solve \(z'' + 2cz' + \omega_0^2 z = Ae^{i\omega t} \).
- We try \(z(t) = ae^{i\omega t} \) and get

\[
 z'' + 2cz' + \omega_0^2 z = [(i\omega)^2 + 2c(i\omega) + \omega_0^2]ae^{i\omega t} = P(i\omega)z
\]

where \(P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2 \) is the characteristic polynomial.

- The complex solution is \(z(t) = \frac{1}{P(i\omega)} Ae^{i\omega t} \).
- The real solution is \(x_p(t) = \text{Re}(z(t)) \).
Example

\[x'' + 5x' + 4x = 50 \cos 3t \]

\begin{itemize}
 \item \(P(\lambda) = \lambda^2 + 5\lambda + 4. \)
 \begin{itemize}
 \item \(P(i\omega) = P(3i) = -5 + 15i \)
 \end{itemize}
 \item \(z(t) = \frac{1}{P(i\omega)} \cdot 50e^{3it} \)
 \begin{align*}
 &= -[(\cos 3t - 3 \sin 3t) + i(\sin 3t + 3 \cos 3t)] \\
 \end{align*}
 \item \(x_p(t) = \text{Re}(z(t)) = 3 \sin 3t - \cos 3t. \)
\end{itemize}
The Transfer Function

• The complex solution is

\[z(t) = \frac{1}{P(i\omega)} Ae^{i\omega t} = H(i\omega) Ae^{i\omega t}, \]

where \(H(i\omega) = \frac{1}{P(i\omega)} \) is called the transfer function.

• We will use complex polar coordinates to write

\[H(i\omega) = G(\omega)e^{-i\phi(\omega)}, \]

where \(G(\omega) = |H(i\omega)| \) is the called the gain and \(\phi(\omega) \) is called the phase shift.
The Gain and Phase Shift

• If \(P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2 \) is the characteristic polynomial, then \(P(i\omega) = R e^{i\phi} \), where

\[
R = \sqrt{(\omega_0^2 - \omega^2)^2 + 4c^2 \omega^2}, \quad \text{and}
\]
\[
\phi = \arccot \left(\frac{\omega_0^2 - \omega^2}{2c\omega} \right).
\]

• The transfer function is

\[
H(i\omega) = \frac{1}{P(i\omega)} = \frac{1}{R} e^{-i\phi} = G(\omega) e^{-i\phi}.
\]

♦ The gain \(G(\omega) = \frac{1}{R} = \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4c^2 \omega^2}}. \)
• The complex particular solution is

\[z(t) = H(i\omega)Ae^{i\omega t} = G(\omega)e^{-i\phi} \cdot Ae^{i\omega t} = G(\omega)Ae^{i(\omega t - \phi)}. \]

• The real particular solution is

\[x_p(t) = \text{Re}(z(t)) = G(\omega)A \cos(\omega t - \phi). \]

♦ The amplitude of \(x_p \) is \(G(\omega)A \), and the phase is \(\phi \).
• The general solution is

\[x(t) = x_p(t) + x_h(t) \]

\[= G(\omega)A \cos(\omega t - \phi) + x_h(t), \]

where \(x_h(t) \) is the general solution of the homogeneous equation.

• \(x_h(t) \to 0 \) as \(t \) increases, so \(x_h \) is called the \textit{transient} term.

• \(x_p(t) = G(\omega)A \cos(\omega t - \phi) \) is called the \textit{steady-state solution}.
Example

\[x'' + 5x' + 4x = 50 \cos 3t \]

- \[G(\omega) = \frac{1}{\sqrt{(4 - \omega^2)^2 + 25\omega^2}} \]
 and
 \[\phi = \arccot \left(\frac{4 - \omega^2}{5\omega} \right) . \]

- With \(\omega = 3 \),
 \[G(3) = \frac{1}{5\sqrt{10}} \approx 0.0632 \]
 \[\phi = \arccot(-3/5) \approx 2.1112. \]

- **SS solution** \(x_p(t) = G(3)A \cos(3t - \phi) \).
The Steady-State Solution

\[x_p(t) = G(\omega)A \cos(\omega t - \phi). \]

- The forcing function is \(A \cos \omega t \).
- Properties of the steady-state response:
 - It is oscillatory at the driving frequency.
 - The amplitude is the product of the gain, \(G(\omega) \), and the amplitude of the forcing function.
 - It has a phase shift of \(\phi \) with respect to the forcing function.
The Gain

\[G(\omega) = \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4c^2\omega^2}} \]

Set \(\omega = s\omega_0 \) and \(c = D\omega_0 / 2 \) (or \(s = \omega / \omega_0 \) and \(D = 2c / \omega_0 \)). Then

\[G(\omega) = \frac{1}{\omega_0^2} \frac{1}{\sqrt{(1 - s^2)^2 + D^2s^2}} \]