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Goal:
To understand examples of Hopf Actions on Algebras

We say that a Hopf algebra H acts on an algebra A if

A is an H-module algebra:

A is an H-module, and the multiplication and unit maps of A are H-morphisms.

We also need a notion of faithfulness:

H acts on A inner faithfully

if there is not an induced action of H/I on A for any nonzero Hopf ideal I of H .

In other words, the Hopf action does not factor through a smaller Hopf quotient.



Two types of results

Fix a field k.
Let H be a class of Hopf algebras over k.
Let A be a class of algebras over k.

[No Quantum Symmetry]
If H ∈ H acts inner faithfully on any A ∈ A,

then H must be cocommutative.
(e.g. the Hopf action factors through the action of a cocommutative Hopf algebra)

[Honest Quantum Symmetry]
Classify all pairs (H,A) so that H ∈ H acts inner faithfully on A ∈ A.

Here, at least one H is non-cocommutative.
This problem is more tractable when either:

the size of the class of Hopf algebras H is limited, or
the size of the class of algebras A is limited.



Our Setting

[Honest Quantum Symmetry] with H limited, A vast

k = containing a primitive n-th root of unity ζ (char k is coprime to n)

H = Taft algebra T(n)
generated by grouplike element g and (1, g)-skew primitive element x,

subject to relations: gn = 1, xn = 0, and xg = ζgx

(H = uq(sl2) for q a primitive 2n-th root of unity, or D(T(n)), later)

A = path algebras kQ, of a quiver Q
Q is a directed graph consisting of a set of vertices Q0, a set of arrows Q1,

and start/target maps s/t : Q1 Ï Q0.
Basis elements of kQ are paths in Q. Multiplication of basis elements

is the composition of paths where defined, or 0 otherwise.



Standing Hypotheses

• The quiver Q is finite (|Q0|, |Q1| < ∞)

• Q is loopless

• Q is Schurian (∀ i, j ∈ Q0, ∃ at most one a ∈ Q1 with s(a) = i and t(a) = j)

Schurian Not Schurian Schurian

• The action of T(n) preserves the path length filtration on kQ
(e.g. for x ∈ T(n) and a ∈ Q1, we allow x · a ∈ kQ0)



Theorem 1 [T(n)-actions on kQ]

Given any quiver Q that admits a faithful action of Zn
(by quiver automorphism),

we have a classification of (e.g. precise formulae for)
inner faithful actions of T(n) on kQ

that extend the given Zn-action on Q.

Example: We classify Sweedler (T(2))-actions on the path algebra of Q below.

Here, the action of Z2 is given by



Steps of Proof of Theorem 1

I. Decompose Q into a certain union of subquivers {Q`}
so that Q` ∩Q`′ ⊂ Q0 for ` 6= ` ′.

II. Have explicit formulae for T(n)-action on kQ`

III. We obtain T(n)-action on kQ from the set of T(n)-actions on kQ` ,
by making identifications of the vertices in

intersections Q` ∩Q`′ with ` 6= ` ′.

Further, the *inner faithful* actions of T(n) on kQ are those for
which x does not act by zero.



Steps of Proof of Theorem 1

I. Decompose Q into a certain union of subquivers {Q`} w/ Q`∩Q`′ ⊂ Q0 for ` 6= ` ′.

- We can take eachQ` to be a Zn-stable subquiver of a complete digraph or complete
bipartite graph, that is *maximal* with respect to partial ordering given by inclusion.
- Call such Q` a Zn-component of Q.
- Such a decomposition of Q is unique up to relabelling.

Example continued:

.

.

Q (that admits faithful Z2-action) Z2-components of Q



Steps of Proof of Theorem 1

II. Have explicit formulae for T(n)-action on kQ`

- Take ei to be the trivial path at i ∈ Q0, and take Zn = 〈g〉.

- Take O = {1, . . . ,m} to be a Zn-orbit of vertices, for m|n.

- Relabel vertices so that g · ei = ei+1, with indices taken modulo m.

- We get that x · ei = γζi(ei − ζei+1) for γ ∈ k

- The Zn-action on arrows is given by quiver automorphism, up to scalar multiple.

- For a ∈ (Q`)1, we get that x · a = αa + β(g · a) + λσ (a),
where α, β, λ ∈ k depends on the configuration of a and g · a, and
σ (a) is a path with start = s(a) and target = t(g · a) (if it exists, or 0 otherwise).

We illustrate this with the running Example. Brace yourself!



Steps of Proof of Theorem 1

II. Have explicit formulae for T(n)-action on kQ`

.

1 2
a

b

1′ 2′

3′ 4′

c d

e f

σ (a) = e1 σ (b) = e2
g · e1 = e2 g · e2 = e1
g · a = µb g · b = µ−1a
x · e1 = −γ(e1 + e2) x · e2 = γ(e1 + e2)
x · a = γa − γµb + λe1
x · b = −γb + γµ−1a − λµ−1e2

σ (c) = e σ (d) = f σ (e) = c σ (f ) = d
g · e1′ = e2′ g · e2′ = e1′
g · e3′ = e4′ g · e4′ = e3′

g · c = µ′d g · d = µ′−1c
g · e = µ′′f g · f = µ′′−1e
x · e1′ = −γ ′(e1′ + e2′) x · e2′ = γ ′(e1′ + e2′)
x · e3′ = −γ ′′(e3′ + e4′) x · e4′ = γ ′′(e3′ + e4′)
x · c = −γ ′′c − γ ′µ′d + λ′e
x · d = γ ′′d + γ ′µ′−1c − λ′µ′−1µ′′f
x · e = γ ′′e − γ ′µ′′f + λ′′c
x · f = −γ ′′f + γ ′µ′′−1e − λ′µ′µ′′−1d

for γ, γ ′, γ ′′, λ, λ′, λ′′ ∈ k, µ, µ′, µ′′ ∈ k×, with (γ ′)2 = (γ ′′)2 + λ′λ′′



.

(You’ll remember all of those details, of course)



Steps of Proof of Theorem 1

III. We obtain the T(n)-action on kQ from the set of T(n)-actions on kQ` , by making
identifications of the vertices in intersections Q` ∩Q`′.

In the running Example, identity the pairs of vertices

1 & 1’ and 2 & 2’

of the Z2-components of Q, to yield the quiver Q.



Steps of Proof of Theorem 1

II. Have explicit formulae for T(n)-action on kQ`

.

1 2
a

b

1′ 2′

3′ 4′

c d

e f

σ (a) = e1 σ (b) = e2
g · e1 = e2 g · e2 = e1
g · a = µb g · b = µ−1a
x · e1 = −γ(e1 + e2) x · e2 = γ(e1 + e2)
x · a = γa − γµb + λe1
x · b = −γb + γµ−1a − λµ−1e2

σ (c) = e σ (d) = f σ (e) = c σ (f ) = d
g · e1′ = e2′ g · e2′ = e1′
g · e3′ = e4′ g · e4′ = e3′

g · c = µ′d g · d = µ′−1c
g · e = µ′′f g · f = µ′′−1e
x · e1′ = −γ ′(e1′ + e2′) x · e2′ = γ ′(e1′ + e2′)
x · e3′ = −γ ′′(e3′ + e4′) x · e4′ = γ ′′(e3′ + e4′)
x · c = −γ ′′c − γ ′µ′d + λ′e
x · d = γ ′′d + γ ′µ′−1c − λ′µ′−1µ′′f
x · e = γ ′′e − γ ′µ′′f + λ′′c
x · f = −γ ′′f + γ ′µ′′−1e − λ′µ′µ′′−1d

for γ, γ ′, γ ′′, λ, λ′, λ′′ ∈ k, µ, µ′, µ′′ ∈ k×, with (γ ′)2 = (γ ′′)2 + λ′λ′′



Steps of Proof of Theorem 1

III. We obtain the T(n)-action on kQ from the set of T(n)-actions on kQ` , by making
identifications of the vertices in intersections Q` ∩Q`′.

In the running Example, identity the pairs of vertices

1 & 1’ and 2 & 2’

of the Z2-components of Q, to yield the quiver Q.

As a result, we must impose the following restriction on the scalar
parameters of the two actions above:

γ = γ ′

Further, the *inner faithful* actions of T(n) on kQ are those for which
x does not act by zero.



Actions of uq(sl2) and D(T(n))

We can extend the Taft actions on kQ in Theorem 1 to actions of the
following Hopf algebras:

Let q be a 2n-th root of unity. The Frobenius-Lustzig kernel uq(sl2)
is generated by grouplike K, (1, K)-skew-primitive E, and (K−1, 1)-skew-primitive F ,
with relations

KE = q2EK, KF = q−2FK, Kn = 1, En = Fn = 0, EF − FE = K −K−1

q − q−1 .

By work of H.-X Chen (1999), the Drinfeld double D(T(n)) of the n-th Taft algebra
is generated by g, x,G,X, subject to relations:

xg = ζgx, GX = ζXG, gX = ζXg, xG = ζGx, gG = Gg,
gn = Gn = 1, xn = Xn = 0, xX − ζXx = ζ(gG − 1).

Here, g and G grouplike , x is (1, g)-skew primitive, and X is (1, G)-skew primitive.



Theorem 2 [Extended actions of uq(sl2), D(T(n)) on kQ]

Since uq(sl2) and D(T(n)) are both generated by Hopf subalgebras
that are isomorphic to Taft algebras,

.
namely, take 〈K, E〉, 〈K, F〉 for uq(sl2),

and
〈g, x〉, 〈G,X〉 for D(T(n))

.
we have the following result.

Fix an action of Zn on a quiver Q.
Additional restraints on parameters are determined so that

the Taft actions on kQ produced in Theorem 1
extend to an action of uq(sl2) and to an action of D(T(n)).



On the category of Yetter Drinfel’d modules over T(n)

As a consequence of Theorem 2,
we obtain that kQ, in the case where Q admits Zn-symmetry,

is an algebra in the category of Yetter-Drinfeld modules over T(n).

Motivated by the Radford-Majid biproduct construction, we ask:

Let Q be a quiver that admits Zn-symmetry.
When does kQ admit the structure of a bialgebra/ Hopf algebra

in the category of Yetter-Drinfeld modules over T(n)?


