ACTIONS OF SOME POINTED HOPF ALGEBRAS
ON
PATH ALGEBRAS OF QUIVERS

Chelsea Walton
Massachusetts Institute of Technology
JMM San Antonio 2015

Joint with Ryan Kinser, arXiv: 1410.7696 (version 3)



Goal:
To understand examples of Hopf Actions on Algebras

We say that a Hopf algebra H acts on an algebra A if
A is an H-module algebra:

A is an H-module, and the multiplication and unit maps of A are H-morphisms.

We also need a notion of faithfulness:
H acts on A inner faithfully

if there is not an induced action of H/I on A for any nonzero Hopf ideal I of H.

In other words, the Hopf action does not factor through a smaller Hopf quotient.



Two types of results

Fix a field k.
Let 9 be a class of Hopf algebras over k.
Let A be a class of algebras over k.

[No Quantum Symmetry]

If H ¢ 9C acts inner faithfully on any A ¢ A,
then H must be cocommutative.

(e.g. the Hopf action factors through the action of a cocommutative Hopf algebra)

[Honest Quantum Symmetry|

Classify all pairs (H, A) so that H € ¥( acts inner faithfully on A € A.
Here, at least one H is non-cocommutative.

This problem is more tractable when either:
the size of the class of Hopf algebras ¥ is limited, or

the size of the class of algebras A is limited.



Our Setting

|[Honest Quantum Symmetry] with % limited, A vast

k = containing a primitive n-th root of unity € (char k is coprime to n)

H = Taft algebra T(n)
generated by grouplike element g and (1, g)-skew primitive element x,

subject to relations: g" =1,x" =0, and xg = €gx

(H = uq(slp) for q a primitive 2n-th root of unity, or D(T(n)), later)

A = path algebras kQ, of a quiver Q

Q is a directed graph consisting of a set of vertices g, a set of arrows Qy,
and start/target maps s/t : Q; — Q.
Basis elements of kQ are paths in Q. Multiplication of basis elements

is the composition of paths where defined, or O otherwise.



Standing Hypotheses

e The quiver Q is finite (|Qy|, |Q1] < o)
e Q is loopless

e J is Schurian (V i,j € Qo 3 at most one a € Q; with s(a) = i and t(a) = j)

() > @ \—/

Schurian Not Schurian Schurian

e The action of T(n) preserves the path length filtration on kQ
(e.g. for x € T(n) and a € Qy, we allow x -a € kQy)



Theorem 1 [T(n)-actions on kQ)]

Given any quiver Q that admits a faithful action of Z,
(by quiver automorphism),

we have a classification of (e.g. precise formulae for)
inner faithful actions of T(n) on kQ
that extend the given Zj,-action on Q.

Example: We classify Sweedler (T(2))-actions on the path algebra of Q below.




Steps of Proof of Theorem 1

I. Decompose Q into a certain union of subquivers {Q¢}
so that QN QY c Q, for ¢ - ¢.

I1. Have explicit formulae for T(n)-action on kQ°’

I1I. We obtain T(n)-action on kQ from the set of T(n)-actions on kQ¥,
by making identifications of the vertices in
intersections Qf N QY with ¢ # ¢'.

Further, the *inner faithful* actions of T(n) on kQ are those for
which x does not act by zero.



Steps of Proof of Theorem 1
I. Decompose Q into a certain union of subquivers {Q°} w/ QN QY c Qyfort + ¢

- We can take each Qf to be a Z,-stable subquiver of a complete digraph or complete
bipartite graph, that is “'maximal® with respect to partial ordering given by inclusion.
- Call such Of a Z,-component of Q.

- Such a decomposition of Q is unique up to relabelling.

Example continued:
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Q (that admits faithful Zs-action) Zy-components of Q



Steps of Proof of Theorem 1

II. Have explicit formulae for T(n)-action on kQ°

- Take e; to be the trivial path at i € Qg, and take Z, = (g).

- Take O = {1,...,m} to be a Z,-orbit of vertices, for m|n.

- Relabel vertices so that g - e; = e;,1, with indices taken modulo m.

- We get that x - e; = yCi(e; — Cej.q) for vy € k

- The Z,-action on arrows is given by quiver automorphism, up to scalar multiple.

- For a € (Q%)4, we get that x -a = aa + Blg - a) + Ac(a),
where «, B, A € k depends on the configuration of a and g - a, and
o(a) is a path with start = s(a) and target = t(g - a) (if it exists, or O otherwise).

We illustrate this with the running Example. Brace yourself!



Steps of Proof of Theorem 1

II. Have explicit formulae for T(n)-action on kQ°

ola) =e; o(b)=ey
g-€1=¢€ (g-€2=¢€
gra=pb g-b=pa
x-e1=—yler+e) x-ey=17yle+ ey
x-a=ya—yub + deq
x-b=—yb+ynlta-Anle,
olc)=e old)=f ole)=c olf)=d
g-ei/=e2/ g-e2/=ei/
g- €3y = ey g-eypy = 63{/
g-c=pd g-d=p~c ) )
g-e= Il”f g .]c _ H//_ie 1 .4--6; ........ .f. =@ 2
x-ep=—9yleyr+ey) x-ey=79ley+ ey
x-ey=—y'lex+ey) x-ey=7"(ey+ey) c d
x-c=—'c—7'pd+Ne
1 - d — '}’”d + ?//”/—10 —)\'Ill,—l”"f
X-€ = ?/"e - ?/,ll”f +A'c 3’ [ Y A — *‘ yAS
x f — —')’”f + 7/”//—16 _ )\,,[l,[l"_id

for 7' 7/’ ?///’ }\,, A/’ A// E k’ Il, Il,, ”// E kx,

with ()2 = (¢")? + A\



(You'll remember all of those details, of course)



Steps of Proof of Theorem 1

I11. We obtain the T(n)-action on kQ from the set of T(n)-actions on kQ¥Y, by making
identifications of the vertices in intersections Q¢ N QY.

In the running Example, identity the pairs of vertices

1&1 and 2 &2

of the Zs-components of Q, to yield the quiver Q.



Steps of Proof of Theorem 1

II. Have explicit formulae for T(n)-action on kQ°

ola) =e; o(b)=ey
g-€1=¢€ (g-€2=¢€
gra=pb g-b=pa
x-e1=—yler+e) x-ey=17yle+ ey
x-a=ya—yub + deq
x-b=—yb+ynlta-Anle,
olc)=e old)=f ole)=c olf)=d
g-ei/=e2/ g-e2/=ei/
g- €3y = ey g-eypy = 63{/
g-c=pd g-d=p~c ) )
g-e= Il”f g .]c _ H//_ie 1 .4--6; ........ .f. =@ 2
x-ep=—9yleyr+ey) x-ey=79ley+ ey
x-ey=—y'lex+ey) x-ey=7"(ey+ey) c d
x-c=—'c—7'pd+Ne
1 - d — '}’”d + ?//”/—10 —)\'Ill,—l”"f
X-€ = ?/"e - ?/,ll”f +A'c 3’ [ Y A — *‘ yAS
x f — —')’”f + 7/”//—16 _ )\,,[l,[l"_id

for 7' 7/’ ?///’ }\,, A/’ A// E k’ Il, Il,, ”// E kx,

with ()2 = (¢")? + A\



Steps of Proof of Theorem 1

I11. We obtain the T(n)-action on kQ from the set of T(n)-actions on kQ¥Y, by making
identifications of the vertices in intersections Q¢ N QY.

In the running Example, identity the pairs of vertices

1&1 and 2 &2

of the Zs-components of Q, to yield the quiver Q.

As a result, we must impose the following restriction on the scalar
parameters of the two actions above:

Y=Y

Further, the *inner faithful* actions of T(n) on kQ are those for which
x does not act by zero.



Actions of u,(slp) and D(T(n))

We can extend the Taft actions on kQ in Theorem 1 to actions of the
following Hopf algebras:

Let g be a 2n-th root of unity. The Frobenius-Lustzig kernel u,(sly)
is generated by grouplike K, (1, K)-skew-primitive E, and (K~!, 1)-skew-primitive F,
with relations

2 ) n n n K-K!
KE = ¢EK, KF=q?FK, K'=1, E"=F"=0, EF-FE=—_"_

q-q'’

By work of H.-X Chen (1999), the Drinfeld double D(T(n)) of the n-th Taft algebra
is generated by g, x, G, X, subject to relations:

xg = Cgx, GX =C¢XG, gX =C¢Xg, xG=CGx, ¢gG=(Gg,
gt=G"=1, x"=X"=0, xX-¢Xx=CgG-1).
Here, g and G grouplike , x is (1, g)-skew primitive, and X is (1, G)-skew primitive.



Theorem 2 [Extended actions of u,(sly), D(T(n)) on kQ]

Since uy(slp) and D(T(n)) are both generated by Hopf subalgebras
that are isomorphic to Taft algebras,

namely, take (K, E), (K, F) for u,(sly),
and
(g.x), (G, X) for D(T(n))

we have the following result.

Fix an action of Z, on a quiver Q.
Additional restraints on parameters are determined so that
the Taft actions on kQ produced in Theorem 1
extend to an action of u,(sly) and to an action of D(T'(n)).




On the category of Yetter Drinfel'd modules over T(n)

As a consequence of Theorem 2,
we obtain that kQ, in the case where Q admits Z,-symmetry,
is an algebra in the category of Yetter-Drinfeld modules over T(n).

Motivated by the Radford-Majid biproduct construction, we ask:

Let Q be a quiver that admits Z,-symmetry.
When does kQ admit the structure of a bialgebra/ Hopf algebra
in the category of Yetter-Drinfeld modules over T(n)?




