ACTIONS OF SOME POINTED HOPF ALGEBRAS ON PATH ALGEBRAS OF QUIVERS

Chelsea Walton Massachusetts Institute of Technology JMM San Antonio 2015

Joint with Ryan Kinser, arXiv: 1410.7696 (version 3)

Goal:

To understand examples of Hopf Actions on Algebras

We say that a Hopf algebra H acts on an algebra A if

A is an *H*-module algebra:

A is an H-module, and the multiplication and unit maps of A are H-morphisms.

We also need a notion of faithfulness:

H acts on *A* inner faithfully

if there is not an induced action of H/I on A for any nonzero Hopf ideal I of H. In other words, the Hopf action does not factor through a smaller Hopf quotient.

Two types of results

Fix a field \Bbbk . Let \Re be a class of Hopf algebras over \Bbbk . Let \Re be a class of algebras over \Bbbk .

[No Quantum Symmetry]

If $H \in \mathfrak{H}$ acts inner faithfully on any $A \in \mathcal{A}$, then H must be cocommutative.

(e.g. the Hopf action factors through the action of a cocommutative Hopf algebra)

[Honest Quantum Symmetry]

Classify all pairs (H, A) so that $H \in \mathcal{H}$ acts inner faithfully on $A \in \mathcal{A}$. Here, at least one H is non-cocommutative.

> This problem is more tractable when either: the size of the class of Hopf algebras \mathfrak{R} is limited, or the size of the class of algebras \mathfrak{A} is limited.

Our Setting

[Honest Quantum Symmetry] with ${\mathfrak H}$ limited, ${\mathcal A}$ vast

k =containing a primitive *n*-th root of unity ζ (char k is coprime to *n*)

H = Taft algebra T(n)

generated by grouplike element g and (1, g)-skew primitive element x, subject to relations: $g^n = 1, x^n = 0$, and $xg = \zeta gx$

 $(H = u_q(\mathfrak{sl}_2) \text{ for } q \text{ a primitive } 2n\text{-th root of unity, or } D(T(n)), \text{ later})$

 \mathcal{A} = path algebras $\mathbb{k}Q$, of a quiver Q

Q is a directed graph consisting of a set of vertices Q_0 , a set of arrows Q_1 , and start/target maps $s/t : Q_1 \rightarrow Q_0$. Basis elements of $\Bbbk Q$ are paths in Q. Multiplication of basis elements is the composition of paths where defined, or 0 otherwise.

Standing Hypotheses

- The quiver Q is finite $(|Q_0|, |Q_1| < \infty)$
- Q is loopless
- *Q* is Schurian ($\forall i, j \in Q_0, \exists$ at most one $a \in Q_1$ with s(a) = i and t(a) = j)

• The action of T(n) preserves the path length filtration on kQ(e.g. for $x \in T(n)$ and $a \in Q_1$, we allow $x \cdot a \in kQ_0$) Theorem 1 [T(n)-actions on $\mathbb{k}Q$]

Given any quiver Q that admits a faithful action of \mathbb{Z}_n (by quiver automorphism),

we have a classification of (e.g. precise formulae for) inner faithful actions of T(n) on kQthat extend the given \mathbb{Z}_n -action on Q.

Example: We classify Sweedler (T(2))-actions on the path algebra of Q below.

Here, the action of \mathbb{Z}_2 is given by • •

I. Decompose *Q* into a certain union of subquivers $\{Q^{\ell}\}$ so that $Q^{\ell} \cap Q^{\ell'} \subset Q_0$ for $\ell \neq \ell'$.

II. Have explicit formulae for T(n)-action on $\mathbb{k}Q^{\ell}$

III. We obtain T(n)-action on kQ from the set of T(n)-actions on kQ^{ℓ} , by making identifications of the vertices in intersections $Q^{\ell} \cap Q^{\ell'}$ with $\ell \neq \ell'$.

Further, the *inner faithful* actions of T(n) on kQ are those for which x does not act by zero.

I. Decompose *Q* into a certain union of subquivers $\{Q^{\ell}\} \le Q^{\ell} \cap Q^{\ell'} \subset Q_0$ for $\ell \neq \ell'$.

- We can take each Q^{ℓ} to be a \mathbb{Z}_n -stable subquiver of a complete digraph or complete bipartite graph, that is *maximal* with respect to partial ordering given by inclusion.

- Call such Q^{ℓ} a \mathbb{Z}_n -component of Q.

- Such a decomposition of Q is unique up to relabelling.

Q (that admits faithful \mathbb{Z}_2 -action)

II. Have explicit formulae for T(n)-action on $\mathbb{k}Q^{\ell}$

- Take e_i to be the trivial path at $i \in Q_0$, and take $\mathbb{Z}_n = \langle g \rangle$.
- Take $\emptyset = \{1, \ldots, m\}$ to be a \mathbb{Z}_n -orbit of vertices, for m|n.
- Relabel vertices so that $g \cdot e_i = e_{i+1}$, with indices taken modulo m.
- We get that $x \cdot e_i = \gamma \zeta^i (e_i \zeta e_{i+1})$ for $\gamma \in \Bbbk$
- The \mathbb{Z}_n -action on arrows is given by quiver automorphism, up to scalar multiple.
- For $a \in (Q^{\ell})_1$, we get that $x \cdot a = \alpha a + \beta(g \cdot a) + \lambda \sigma(a)$, where $\alpha, \beta, \lambda \in \mathbb{k}$ depends on the configuration of a and $g \cdot a$, and $\sigma(a)$ is a path with start = s(a) and target = $t(g \cdot a)$ (if it exists, or 0 otherwise).

We illustrate this with the running Example. Brace yourself!

II. Have explicit formulae for T(n)-action on $\mathbb{k}Q^{\ell}$

for $\gamma, \gamma', \gamma'', \lambda, \lambda', \lambda'' \in \mathbb{k}$, $\mu, \mu', \mu'' \in \mathbb{k}^{\times}$, with $(\gamma')^2 = (\gamma'')^2 + \lambda' \lambda''$

(You'll remember all of those details, of course)

III. We obtain the T(n)-action on kQ from the set of T(n)-actions on kQ^{ℓ} , by making identifications of the vertices in intersections $Q^{\ell} \cap Q^{\ell'}$.

In the running Example, identity the pairs of vertices

1 & 1' and 2 & 2'

of the \mathbb{Z}_2 -components of Q, to yield the quiver Q.

II. Have explicit formulae for T(n)-action on $\mathbb{k}Q^{\ell}$

for $\gamma, \gamma', \gamma'', \lambda, \lambda', \lambda'' \in \mathbb{k}$, $\mu, \mu', \mu'' \in \mathbb{k}^{\times}$, with $(\gamma')^2 = (\gamma'')^2 + \lambda' \lambda''$

III. We obtain the T(n)-action on kQ from the set of T(n)-actions on kQ^{ℓ} , by making identifications of the vertices in intersections $Q^{\ell} \cap Q^{\ell'}$.

In the running Example, identity the pairs of vertices

1 & 1' and 2 & 2'

of the \mathbb{Z}_2 -components of Q, to yield the quiver Q.

As a result, we must impose the following restriction on the scalar parameters of the two actions above:

$$\gamma = \gamma'$$

Further, the *inner faithful* actions of T(n) on $\mathbb{k}Q$ are those for which x does not act by zero.

Actions of $u_q(\mathfrak{sl}_2)$ and D(T(n))

We can extend the Taft actions on kQ in Theorem 1 to actions of the following Hopf algebras:

Let *q* be a 2*n*-th root of unity. The *Frobenius-Lustzig kernel* $u_q(\mathfrak{sl}_2)$ is generated by grouplike *K*, (1, *K*)-skew-primitive *E*, and (K^{-1} , 1)-skew-primitive *F*, with relations

$$KE = q^2 EK, \quad KF = q^{-2} FK, \quad K^n = 1, \quad E^n = F^n = 0, \quad EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$

By work of H.-X Chen (1999), the *Drinfeld double* D(T(n)) *of the n-th Taft algebra* is generated by g, x, G, X, subject to relations:

$$\begin{aligned} xg &= \zeta gx, \quad GX = \zeta XG, \quad gX = \zeta Xg, \quad xG = \zeta Gx, \quad gG = Gg, \\ g^n &= G^n = 1, \quad x^n = X^n = 0, \quad xX - \zeta Xx = \zeta (gG - 1). \end{aligned}$$

Here, g and G grouplike, x is (1, g)-skew primitive, and X is (1, G)-skew primitive.

Theorem 2 [Extended actions of $u_q(\mathfrak{sl}_2)$, D(T(n)) on $\mathbb{k}Q$]

Since $u_q(\mathfrak{sl}_2)$ and D(T(n)) are both generated by Hopf subalgebras that are isomorphic to Taft algebras,

namely, take $\langle K, E \rangle$, $\langle K, F \rangle$ for $u_q(\mathfrak{sl}_2)$, and $\langle g, x \rangle$, $\langle G, X \rangle$ for D(T(n))

we have the following result.

Fix an action of \mathbb{Z}_n on a quiver Q. Additional restraints on parameters are determined so that the Taft actions on $\mathbb{k}Q$ produced in Theorem 1 extend to an action of $u_q(\mathfrak{sl}_2)$ and to an action of D(T(n)). On the category of Yetter Drinfel'd modules over T(n)

As a consequence of Theorem 2, we obtain that kQ, in the case where Q admits \mathbb{Z}_n -symmetry, is an algebra in the category of Yetter-Drinfeld modules over T(n).

Motivated by the Radford-Majid biproduct construction, we ask:

Let *Q* be a quiver that admits \mathbb{Z}_n -symmetry. When does $\mathbb{k}Q$ admit the structure of a bialgebra/ Hopf algebra in the category of Yetter-Drinfeld modules over T(n)?