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4 Symmetry

"The universe is burlt on a plan the
profoand symmetry of which is
somethow present in the inner
structure of our intellect.”

~ Paul Valery




“dymmetry iy often a constituent of heauty...”
- Winstor Churchill
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6ROUPS & SYMMETRY

Given an object X, a symmetry of X is an invertible
property-preserving transformation from X to itself.

The collection of symmetries of an object X forms a group G.
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SYMMETRIES:
GOTTA CATCH THEM ALL...
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GROUPS & SYMMETRIES

NATURAL QUESTION:
DOES EACH (FINITE) GROUP ARISE AS THE
COLLECTION OF SYMMETRIES OF A NICE 0BJECT?
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Abstract

‘We briefly review the distinction between abstract groups and symmetry groups of objects, and discuss the question
of which groups have appeared as the symmetry groups of physical objects. To our knowledge, the quaternion group

(a beautiful group with eight el ) has not appeared in this fashion. We describe the quaternion group, both
formally and intuitively, and give our strategy for representing the quaternion group as the symmetry group of a
physical sculpture.

1 Introduction

A symmetry of an object is a geometric transformation which leaves the object unchanged. So, for example,
an object with 3-fold rotational symmetry has three symmetries: rotation by 120°, rotation by 240°, and
the trivial symmetry, where we do nothing. The symmetries of an object naturally form a group under
composition. Care must be taken to differentiate between the symmetry group of an object, consisting of
geometric transformations that leave the object unchanged, and the abstract group, which only contains
information about how the elements of the group interact with each other under composition.

(a) An object with symmetry group iso-  (b) Another object with symmetry group (c) A Cayley graph for Ds. The edges
morphic to Dy. isomorphic to Dy. with arrows correspond to rotations, the
other edges correspond to reflections.

Figure 1: Symmetric designs on the sphere.

As an example, consider the objects pictured in Figure[I] The object shown in Figure[Ta]has no planes
of mirror symmetry, but has ten gyration points (points of rotational symmetry, marked with a small circle).
The symmetry group of this object consists of rotations about these gyration points by multiples of either
90° or 180° (depending on the kind of gyration point). The object shown in Figure [Tb|has four planes of
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the six neighbouring cubical cells, thrc
copies of itself following the same mat

The obvious (perhaps even canon-
ical) choice for such a design is, of
course, a monkey. See Figure[6] With
appropriate posing of the monkey, its
bilateral symmetry can be broken, and
including the head and tail it has six
limbs, one for each face of the cube.
The monkey’s left foot stands on the
head of a neighbour, the left hand
grabs a neighbour’s right foot, and the
right hand grabs a neighbour’s tail.
By symmetry, everything that goes
around comes around — so the other
three neighbours of this monkey are
standing on this monkey’s head, grab-
bing its right foot, and grabbing its
tail.

The monkey was designed in a
Euclidean cube. It was then run
through eight different transforma-
tions in order to move eight copies
of it to the appropriate positions in $*
and then back to R? by stereographic
projection. The first step of all of
these transformations is to project the
Euclidean cube into a curved cube in
§3. This is done in exactly the same w
hypersphere $°. To be precise, we thir
the point (1,x,y,z) on one of the cells «

Now that the design is on §°, we
eight transformations, and stereograph
from — we put the north pole at a verte:
are as far from infinity as possible. Thi
each other as possible. Very small fea
entire sculpture up, but only so far as tl

The resulting sculpture is shown
at all: every monkey is different if we
the appropriate isometries of the 3-sph
identical. From this vantage point the tl
two larger, outer monkeys and two sma
hand-foot and hand-tail connections.

Each monkey sits inside of a cel
dimensional faces of the hypercube.
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bject shown in Figure[1a] has no planes
symmetry, marked with a small circle).
 gyration points by multiples of either
shown in Figure[Tb] has four planes of

the six neighbouring cubical cells, through the six square faces of the cube. The design must connect onto
copies of itself following the same matching rules as the monkey blocks of Section([3]

The obvious (perhaps even canon-
ical) choice for such a design is, of
course, a monkey. See Figure[6] With
appropriate posing of the monkey, its
bilateral symmetry can be broken, and
including the head and tail it has six
limbs, one for each face of the cube.
The monkey’s left foot stands on the
head of a neighbour, the left hand
grabs a neighbour’s right foot, and the
right hand grabs a neighbour’s tail.
By symmetry, everything that goes
around comes around — so the other
three neighbours of this monkey are
standing on this monkey’s head, grab-
bing its right foot, and grabbing its
tail.

The monkey was designed in a
Euclidean cube. It was then run
through eight different transforma-
tions in order to move eight copies
of it to the appropriate positions in §*
and then back to R? by stereographic
projection. The first step of all of  Fjgure 6: The monkey in a Euclidean cube, prior to mapping into 53,
these transformations is to project the with six neighbours.

Euclidean cube into a curved cube in

§3. This is done in exactly the same way that a cubical cell of the hypercube is radially projected onto the
hypersphere §3. To be precise, we think of a point (x,y,z) in the Buclidean cube [—1,1]* as actually being
the point (1,x,y,z) on one of the cells of the Euclidean hypercube [—1,1]*, and map it to §* by

( 1 Xy Y, Z)

Now that the design is on §*, we (right) multiply it by 1,i, j,k,—1,~i, —j and —k respectively for the
eight transformations, and stereographically project each back to B>. There is a choice of where to project
from — we put the north pole at a vertex of the hypercube, so that in the projection the copies of the monkey
are as far from infinity as possible. This makes the resulting features of the eight monkeys as near in size to
each other as possible. Very small features may be too fragile to 3D print — to avoid this we can scale the
entire sculpture up, but only so far as the largest features fit within the printer and our budget.

The resulting sculpture is shown in Figure[7] Note that the sculpture has no “ordinary” symmetries
at all: every monkey is different if we only consider isometries of 3-dimensional space. However, under
the appropriate isometries of the 3-sphere (as seen through the lens of stereographic projection) they are all
identical. From this vantage point the three pairs of axes of rotation have equal billing: each circle consists of
two larger, outer monkeys and two smaller, inner monkeys. The three pairs of axes go through the head-foot,
hand-foot and hand-tail connections.

Each monkey sits inside of a cell of the hypercube and connects to its neighbours through the 2-
dimensional faces of the hypercube. Therefore, taken together they form the edges and vertices of the

(x3:2) =




MY GOAL:

STUDY SYMMETRIES OF
ALGEBRAS OVER A FIELD K,

| B (L.E. THAT HAVE AN UNDERLYING K- VECTOR SPACE STRUCTURE) ‘

- ESPECIALLY SYMMETRIES OF
B NONCOMMUTATIVE K-ALGEBRAS




SYMMETRIES OF
AFFINE VARIETIES

An affine variety X in affine n-
space A" over a ground field k
is the vanishing set of a (finite)
set of polynomialsin k|x1, ..., 2),].

Symmetries of affine varieties
also form a group.

Classical Geometry <----->  Commutative Algebra



Ca’(egory of Affine Varieties Aff]k contravariant functor X—0O(X)...

Action of a group G on an affine variety X...

GxX—X
.. is @ morphism in Aff;.

.. G is a group & an affine variety, hence a linear algebraic group

.G =(G,m,e,i)
m : G x G — G, multiplication map (morphism in Affy)
e € G, identity element (object in Affy)
i : G — @G, inversion map (morphism in Affy)

satisfying group axioms:

(a) m(o,e) = m(e,0) =0
(b) m(o,i(0)) = m(i(o),0) = e
(c) m(o,m(t,7y)) = m(mlo, 1), 7) [associativity]

forall o, 1,y € G.



Classical Geometry

Category of Affine Varieties Aff,

contravariant functor Xi—0(X)...

Action of a group G on an affine variety X...
GxX—X

.. is @ morphism in Aff,.

.. G is a group & an affine variety, hence a linear algebraic group
5.G=1(G,m,e,i)

(morphism in Aff.)
(object in Affy)
(morphism in Aff.)

m: G x G — G, multiplication map

e € (, identity element

i: G — @G, inversion map
satisfying group axioms:

(a) m(o,e) = mle,0)=0

(b) m(o,ilo)) = mlilo),0) = e

(c) m(o, m(t,7)) = m(m(o, 1),7) [associativity]

forall o, 1,7 € G.

<----->  Commutative Algebra

X OIX) .. Category of Commutative Algebras ComAlg;

Coaction of the coordinate algebra O(G) on O(X)..
O(X) — 0(X) ® 0(G)
.. is @a morphism in ComAlg;.
. 0(@G) is a commutative algebra

with multiplication m : O(G) ® O(G) — O(G) and unit u : k — O(G)
equipped with structure O(G) = (0(G), A, €, S)

A:0(G)— 0(G) ® 0(G),
€:0(G)—=k, frsfle), counit
S:0(G)— 0lG),

comultiplication

antipode

morphisms in ComAlg; satisfying Hopf algebra axioms:

(a) id ® €)A = (e ®id)A = id
(b) m(S ®id)A = m(id ® S)A = ue
(c) (id ® A)A = (A ®@id)A.

[counit axiom)]
[antipode axiom]

[coassociativity]




X 0(X) Category of Commutative Algebras ComAlg

Coaction of the coordinate algebra O(G) on O(X)..

O(X) — O(X) ® O(G)
.. is @ morphism in ComAlg;.

. O(G) is a commutative algebra
with multiplication m : O(G) ® O(G) — O(G) and unit u : k — O(G)
equipped with structure O(G) = (0(G), A, €, S)

ANE: (9((3) O(G) ® O(G), comultiplication
O(G) = k, f+— fle), counit
O(G) — 0(G), antipode

morphisms in ComAlg,. satisfying Hopf algebra axioms:

(a) (id ® €)A = (e ®id)A = id [counit axiom]

(b) m(S ® id)A = m(id ® S)A = ue [antipode axiom]

(c) (id ® A)A = (A ® id)A. [coassociativity]




QUANTUM SYMMETRIES
OF QUANTUM AFFINE VARIETIES

Noncommutative Geometry <---> Noncommutative Algebra

Action of a Quantum Group Coaction of a

ona noncommutative
Quantum Affine Variety Hopf algebra

ona
) _=

>\ g noncommutative

\;p:%rgvp algebra

Fig: Quantum Variety




HOPF ALGEBRAS AND
THEIR (CO)ACTIONS ON ALGEBRAS

Hopf algebras

A Hopf ¢
associotive algebra (H, mu, uu), a coassc
with antip:

gebra H o= (H,my, up, A €, 1 a field k is an
W H, A, &)
» map S, satisfying compatibility conditions.

Take v : HoaHeH withhobr e h

H is commutative i (H, my, ¢
His mutative if (H, A, «)

) Is commutatives e, myoT = my

mmutative: e, ToA = A

Classical Examples
- group algebra we have for g € G

mv uv AMgy=gog €lgy=1 Slgi=g9

. univers eloping algebra of a L 2 Ulgi forx e g
mv uv Alx)=1pox+x Xy =0, Six) '
< kG and Ulg; are cocommutative.
kG fresp, Ulg)) are o utative ¢ G
N is commutative
Hopf actions on algebras Hopf coactions on algebra
~ say that a Hopf algebra H = (H, my ,S) over k acts or We say that a Hopf algebra H = (H, my, ug, &, €, 5; over k coacts on
an algebra A = (A, my, uy) ove if chra A = (A, my, uy)
A is an H-module alg A is an H-comodule
A is an H-module, and m, and u; of A arc H-morphisms A is an H-comodule via p, and m, and uy of A are H-morphisms,
v d hboxex aations to hold below r ¢ y a ceAand he H ) ¥
need box ‘l equatiol » hold below for any a, 1and h We need boxed tions 1o hold below for any e, b Land
with Afh) = ¥ h J
HuAuA—*h HuA h ) hwab
A A : A AN Fig - by [F - (b 71 & he - b)
" Mo A hoot Bty
A it T
elh) F

Classical exan

e of Hopf {cojactions on akjebras

Action by co nitative Hopf algy

mutative algel

action by comrmmutative Hopf alg alget
pordinige aly. of algehras: groen o, 1ouse
pe 5 - Laen OF
cocts viby meu v



Hopf algebras

A Hopf algebra H = (H, my, ug, A, €,S) over a field k is an
associative algebra (H, my, ug), a coassociative coalgebra (H, A, €),
with antipode map S, satistfying compatibility conditions.

Take T: H® H - H® H, with h ® ¢ — ¢ ® h.
H is commutative if (H, my, ug) is commutative: i.e, myo T = my.
H is cocommutative if (H, A, €) is cocommutative: i.e, To A = A.

Classical Examples:

. group algebra kG: we have for g € G
mv uv Alg)=g®g €lg)=1% Sg)=g

-1

. universal enveloping algebra of a Lie algebra U(g): for x € g
mv uv Alx)=1gx+x®1y €lx)=0 S(x)= —=x.

. kG and U(g) are cocommutative.

. kG (resp., Ulg)) are commutative <= G (resp., g) is abelian

. O(G) is commutative.



Hopf actions on algebras

We say that a Hopf algebra H = (H, my, ug, A, €,S) over k acts on
an algebra A = (A, mj, u,a) over k if

A is an H-module algebra:
A is an H-module, and m, and us of A are H-morphisms.

We need boxed equations to hold below for any a,b € A and h € H
with A(h) = Y hy ® hy (Sweedler notation):

HoAgA MHma oA h®a®b. ~h®ab
h-action h-action l
ACA— A Shy-a)® (hyb)o|h - (ab) = S (ks ) & (hy - )
Hok_ 4% HgA h® 1 h®1,

h-action h-action

k i A e(h)ly—|h-15 = €(h)1,




Hopf coactions on algebras

We say that a Hopf algebra H = (H, my, ug, A, €,S) over k coacts on
an algebra A = (A, mj, u,) over k if

A is an H-comodule algebra:

A is an H-comodule via p, and m, and ua of A are H-morphisms.

We need boxed equations to hold below for any a,b € A and h € H:

ARA ma A a®b. ~ab
h-coaction h-coaction ]
AoH®A®H A ® pla) ® p(b)—|plab) = b(a)p(b)

k A A 1k 1A

h-coaction h-coaction ]
k® S A® Iy @1g—|p1a) = iA ® 1y




Classical examples of Hopf (co)actions on algebras

Action by cocommutative Hopf algebra on commutative algebra

Take group alg. k(SLs) gen. by matrices (e; e”) € SLy(k) with ej1e9 — e10e91 = 1

k(SLy) acts on k[u, v| by <e“ e”)-u = enu + env, (e“ e”)-V = e1o0U + €99V
€21 €22 €21 €22

Take universal enveloping algebra U(sly), as an algebra:

(h,x,y | hx —xh =2x, hy —yh = -2y, xy — yx = h)
= —-2u, h-v=0, h-w=2w
v, x-v=2w, x-w=0
= 0, yv-v =2u, V-W=1yY

S e c
Il

h-
Ulsly) acts on k[u, v, w] by x-
y

Coaction by commutative Hopf algebra on commutative algebra

Take coordinate alg. of algebraic group O(SL,) = k[e,-,-]?,jzil (e11€99 — €10€91 = 1),

with A(ejj) = Ze (€@ ey, €lej) =6y Sley) = (—1) "eiy1,41 (indices mod 2).

O(SLy) coacts on k[u,v]by ur—u®ey +vRey, vViou®epn+ v en



PROTOTYPICAL EXAMPLES
OF QUANTUM SYMMETRY:
ACTIONS / COACTIONS ON THE QUANTUM PLANE

5 < replace plane with coordinate ring:

\ £ k(z,y k{z,y

€ kg - B0 g - Y ’??
'. Ly (.I;,I/ — '(/..I) (Q;y — (]',ljilf)

g € k™ a .

DN polynomial algebra q-polynomial algebra

Fig: Fig:

Affine 2-space ) ' Quantum 2-space
q-deform classical symmetries to get

quantum symmetries....




Classical Symmetry:
Coaction by commutative Hopf algebra on commutative algebra

Take coordinate algebra of algebraic group
O(SLy) = k[eyjlf;_1/(e11e22 — erzear = 1),

with Aley) Ze (€ ®ey, €ley) =6 Sley) = (—1)"ej 11,11 (indices mod 2).

O(SLy) coacts on k[u, vl by ur—u®en +v®ey, Vi u®en+ VR e

Quantum Symmetry:
Coaction by noncom. Hopf algebra on noncommutative algebra
Take coordinate algebra of quantized algebraic group, for q € k*,

q 2] = ’
€11€12 = J€12€11, €11€21 = (€21€11,

€12€92 = (J€922€12, €91€92 = (J€922€91,

-1
€12€921 = €91€19, €11€92 = €92€11 + (q —q )612621
e11e — qepey =1

with Al(e;) Ze (€iu®@ey, €leg) =65 Sleyj) = (—q) 'eis1,j+1 (indices mod 2).

Oq(SLy) coacts on ky[u,vlby ur—u®epn +v®ey, Vi u®epn+ Vv ey



ANOTHER EXAMPLE OF
QUANTUM SYMMETRY

A=path algebra of a quiver {directed graph) Example continued: A also admits quantum symmetry
k-vector space basis of A = paths of quiver

Multiplication of A = concatenation of paths, 0 elsewhere
Example: .
) acts on A:

g-ey=ey g-a=>h, g-b=a

Extend to action of the Sweedler Hopf alg. (4-diml, noncom, noncocom)

f ( . q? 2
eja=ain A, abz A p H={g,x :g , 0, gx
with Alg) = g & ¢ elg) =1,
) acts on A:
g-b

So A admits classical symmetry for v, A €




A=path algebra of a quiver (directed graph)

k-vector space basis of A = paths of quiver

Multiplication of A = concatenation of paths, O elsewhere

Example:

€1 o/ \0 €9
\ /

b

Eg. eia=ainA, abeAd, a*=0inA

7o = (g :g?=1) acts on A:

g-eq = ey, g-ey = ey, g-a=>b, g-b=a

So A admits classical symmetry



Example continued: A also admits quantum symmetry

a

€1 o/
\

Zo = (g :g®=1) acts on A:

g-er=¢€, g-ep=e, gra=b  g-b=a
Extend to action of the Sweedler Hopf alg. (4-diml, noncom, noncocom)

H={(g,x :g°=1, x*=0, gx + xg = 0)
with Alg) =g®g, €lg)=1 Slg)=g
Alx)=1x+x®g, €lx)=0 Slx)=-xg

x-e = —y(er + ), x-ey = 7yler + e)
x-a=7ya->b)+ ey, x-b=7yla-b)-Aey
for y,A €k



MAIN QUESTION

When does there exist

"genuine” quantum symmetry?

When are there actions (resp., coactions) of
Hopf algebras that do not factor through
actions (resp., coactions) of
classical Hopf algebras?

) Classical Hopf algebras = those that are com. or cocom.
B e.g. group algebras, universal enveloping algebras,
coordinate algebras of algebraic groups




USEFUL HYPOTHESES
10 IMPOSE

T0 ANSWER
MAIN QUESTION



HYPOTHESES ON HOPF ALGEBRAS H

Could impose that H is:
- finite-dimensional as a vector space, or
- semisimple as an algebra (which implies finite-dimensionality), or
- cosemisimple as a coalgebra
[each H-comodule = direct sum of simple H-subcomods], or
- involutory [the square of the antipode S of H is the identity].

If H is finite-dim'l and characteristic of ground field is o, then
semisimple = cosemisimple = involutory.

pointed [every simple H-comodule is 1-dimensional]

There is a very active program to classify finite-dimensional Hopf algebras
in the semisimple (resp. pointed) settings.
Group theoretic (resp. Lie theoretic) techniques are employed.




HYPOTHESES ON ALGEBRAS A

Could impose that A is:

homologically nice
- finite global or injective dimension
- a Koszulity condition (Koszul, N-Koszul, K2 condition)

« a Calabi-Yau condition

° TINYO- 1',,‘{ (Ho)nle ;;,-.:f_y\_ lV 1N1CE

- commutative

- domain

- Noetherian or coherent

- if graded, polynomial growth of graded pieces (finite GK dim)
- nice vector basis of monomials (PBW property)

There is a very active program to study
homological analogues of commutative polynomial rings:
"Artin-Schelter regular algebras", and more generally, "skew Calabi-Yau algebras".




HYPOTHESES ON ACTION OF HOPF ALGEBRA H ON ALGEBRA A

If A is graded (resp., filtered), then one could ask that the
H-action on A preserves this grading (resp., filtration).

Could also use the homological (co)determinant of H-(co)action on A
Related to the quantum determinant in the literature

Eg., to get an analogue of a result involving group actions with G<SL(V),
impose trivial homological determinant

Avoiding technicalities here,
hdet(H,A) is an H-morphism from H to the ground field;
itis trivial if equal to counit map of H.
hcodet(H,A) arises as a "group-like element” in H;
itis trivial if equal to the unit element of H.




Actions of groups G (or £G) and Lie akgeb
1, and that ki and ) are

5, whhere tlh s €)= £ T for hoF

Thearem e nt-Mnoe-Moore,

1t H & a cocomtonttative Hopt slgebra over an alg. clased field of

wacterstic 0, 1 G, for s [

v, 1 I Mnite-dimerssionl, then 1§ 1 w growp €

n an Hopt on an algebes A, we say theee is
metry whin this action must tactor throv

the actton of & cocon v Hopf algebea

There are lots of No Quantam Symmetry res
in the analgtic setting
{outside of the scope of Mis falk).

There, A = the function algehra of a gecemetric obsect

eg. sphere, forus, certain mantfolds)

Quantum Symmetry resalts for

Lactions on commutative domains

[— e

No Quantum Symmetry results for
actions on quantizations of com. domains and ofher algebras:
[




Recall:
Actions of groups G (or kG) and Lie algebras g (or Ulg))

are considered classical, and that kG and U(g) are cocommutative:
A =T1ToA where Th®¥{) =¢®h, for h,{ ¢ H.

Theorem (Cartier-Kostant-Milnor-Moore).

If H is a cocommutative Hopf algebra over an alg. closed field of

characteristic 0, then H = Ul(g)#kG, for some G ~ g.
Further, if H is finite-dimensional, then H = kG, for some group G.

Given an Hopf H-action on an algebra A, we say there is
No Quantum Symmetry when this action must factor through

the action of a cocommutative Hopf algebra.




No Quantum Symmetry results for

H-actions on commutative domains:

Below, Hopf actions must factor through the action of a cocom. Hopf algebra.

Conditions on k on H on A on action Reference
char 0 semisimple commutative mone) | [Etingof-W, 2014
alg. closed (= fin-dim & coss) domain
char > 0 semisimple & commutative mone) | [Etingof-W, 2014]
alg. closed cosemisimple domain
h 0 finite-dim’l & tati
char > nite-dim commutative Mmone) | [Skryabin, 2016]
alg. closed cosemisimple domain




No Quantum Symmetry results for
H-actions on quantizations of com. domains and other algebras:
Below, Hopf actions must factor through the action of a cocom. Hopf algebra.

Here, k is algebraically closed of characteristic 0.

Conditions on H on A on action Reference

finite-dim’l Weyl algebra A, (k) (none) [Cuadra-Etingof-W, to appear|

Ulg) for g fin dim’],
D(X) diff. op. th aff var.,
semisimple (X) di .op on s.moo aft var (none) [Etingof-W, submitted]
generic Sklyanin algebras,

twisted homog coord rings

semisimple & dimH & (degD)!

. division algebra D . [Cuadra-Etingof-W, to appear]
cosemisimple are coprime
k(x1,....Xn) ‘ pres. grading [Chan-W-Zhang]
finite-dim’l iy —qije;xi)

qi; € k* generic (none) [Etingof-W, submitted]




There are lots of No Quantum Symmetry results
in the analytic setting
(outside of the scope of this talk).

There, A is the function algebra of a geometric object
(e.g. sphere, torus, certain manifolds).

So, A is a commutative domain.

Please see references.



Genuine
Quantum
Svymmetry




Given an Hopf H-action on an algebra A, we say there is
Genuine Quantum Symmetry
when this action does *not* factor through

the action of a cocommutative Hopf algebra.

(Time permitting)
We discuss three occurrences of Genuine Quantum Symmetry...



Genuine Quantum Symmetry: on path algebras kQ

Hopf actions below do not factor through actions of smaller Hopf alg. quotients

Conditions on k on H on Q on action | Reference
: . finite
contains a pointed: preserves
rimitive n-th T¢(n), Taft algebras loopless ascendin
P Sy J & B [Kinser-W]

of root unity €
forn > 2

uq(slp), small quan. group
D(T¢(n)), double of T¢(n)

no parallel
arrows

path length
filtration

Example: We classify Sweedler Hopf T(2)-actions

on the path algebra of Q to the right.

|

|

The action of Z is

given by e



Genuine Quantum Symmetry: on commutative domains (fields)

Take k an algebraically closed field of characteristic 0.

Let H be a Hopf algebra that acts on a field so that the action does *not* factor

through a smaller Hopf algebra quotient; say such an H is Galois-theoretical.

Below are noncocom., noncom., finite-dim’l, non-ss, pointed Galois-th’l Hopf algs.

H “Cartan type”
Taft algebras T¢(n) Ay
Nichols Hopf algebras E(n) A"
the book algebra h(¢, 1) Ay x Ay
the Hopf algebra Hg; of dimension 81 Ao
uq(sl) Ay x Ay
uq(gly) Ay x Ay
Twists uq(gl,)”, uq(gl,)  for n > 2 A xA,_y
Twists ug(sl,) ", uglsly) for n > 2 A, 1 xA, 4
Twists uz%(g) for 2@ -1 of such ] | same type as g

g is a finite-dimensional simple Lie algebra Reference: [Etingof-W(2)]



Genuine Quantum Symmetry: on commutative domains (fields)

The Galois-theoretical property is preserved under taking:

e Hopf subalgebra
0%

... 80 this allows one to cook up more quantum symmetries

The Galois-theoretical property is "not* preserved under taking:

e Hopf dual
e 2-cocycle deformation (twisting the multiplication)
e dual 2-cocycle deformation (twisting the comultiplication)

Reference: [Etingof-W(2)]



Galois-theoretical property & Galois extensions

Take k an algebraically closed field of characteristic 0.
Say H is finite-dimensional, Galois-theoretical with H-module field L.

If, further, H is semisimple, then

H Z kG and the extension LY = L® < L is Galois.

On the other hand, if, further, H is pointed, then

LH — L) and the extension LY < L is Galois.

Here, G(H) is the group of group-like elements of H.
G(H)={heH|Ah)=h®h}

Reference: [Etingof-W(2)]



Genuine Quantum Symmetry: on noncommutative domains

The Hopf actions (that do not factor through smaller Hopf actions)
in the setting below are classified:

k is an algebraically closed field of char. O
H is a finite-dimensional Hopf algebra

A is an Artin-Schelter regular algebra of global dimension 2
(a homological analogue of k[u, v])

H-action preserves the grading of A, subject to trivial hom’l det.

...which is a generalization of the classical setting where
G < SLy(k) acts on k[u, v] linearly and faithfully

Reference: [Chan-Kirkman-W-Zhang]



Noncommutative
Invariant Theory
given an H-action on A

study the invariant ring A" ...

Deformation Theory

given an H-action on A

study the smash product algebra A#H
and its deformations...




QUANTUM SYMMETRIES:
GOTTA CATCH THEM ALL!

Universal Quantum Symmetry: set-up

Given an algebra A, a universal quantum group @(A} coacting on A is a Hopf alge-
bra, so that for all Hopf coactions of H on A,

e we get a unique map 7 : Q(A) — H, with

o the following diagram commuting:

Similarly, could define the universal quantum linear group (O, (A) if
e A is graded and generated in degree 1, and

e we impose that all coactions on A preserve the grading of A.




Universal Quantum Symmetry: set-up

Given an algebra A, a universal quantum group Q(A) coacting on A is a Hopf alge-
bra, so that for all Hopf coactions of H on A,

e we get a unique map s : Q(A) —» H, with

e the following diagram commuting:

A®Q(A)
Pa iidA®7T
AT AGH

Similarly, could define the universal quantum linear group ©;;,(A) if

e A is graded and generated in degree 1, and

e we impose that all coactions on A preserve the grading of A.



Universal Quantum Symmetry: basic examples

Examples of universal quantum linear groups:

A ¢ (A) w/ central heodet i, (A) w/ triv. heodet

k[u, v] = ks O(GLa(k)) O(SLy(k))

kqlu, V] i= ol 0y (GLy(k)) O4(SLa(k))  (1-parameter deformation)
ki[u, v] := (UJK_UT_L[) 0;(GLy(k)) O;(SLy(k)) (Jordanian deformation)

As algebras, these are all Noetherian domains and
enjoy other nice ring-theoretic properties.

These algebras are also nice homologically—
these are all Artin-Schelter (AS) regular

(finite global dimension + “AS Gorenstein”).




Universal Quantum Symmetry: algebraic properties of

Philosophy
The universal quantum linear groups ©Q;i,(A) should share
the same ring-theoretic and homological properties of
the comodule algebra A.

* Verified for Q;,(A) assoc. to many classes of *Noetherian* AS regular algebras A
* There’s recent work for non-Noetherian AS regular algebras:

Theorem [W-Wang] Let S be an AS regular algebra of gl.dim 2.
(a) Restricting to triv. hcodet, we get that O;;,(S) is AS regular of gldim 3.

(b) We have that Qf;,,(S) and ©;;,(S) are Noetherian and have polynomial growth
precisely when S does.

* There are still have many basic questions to address. For instance:

Question [W-Wang] We have that all such S are coherent domains.
Is the same true for Qf, (S) and 0}, (S)?




Universal Quantum Symmetry: Hopf algebraic properties of Q

A 034 Qlin (A)

] Lemma [Manin]: If A is graded, quadratic, finitely
| generated in degree 1, and all coactions are linear,
then H coacts on A inner-faithfully < st is surjective.

Say 7t is surjective. If Q;;,(A) is
commutative/ cocommutative/ cosemisimple/ pointed,
then so is H.

This observation is behind the scenes in W-Wang’s study of
Hopf coactions on (not nec. Noeth.) AS regular algs S of gl.dim 2.
Have results on when Hopf quotients of 9;;,(S) are cocommutative.



Universal Quantum Symmetry: analytic properties of Q

There’s an abundance of literature on another rich setting for
Detecting Quantum Symmetry ... in functional analysis.

Here, Q also has the structure of a C*-algebra, and coactions (called
“actions” in many works) respect this structure.

Examples of objects X that are coacted upon in this setting include:

e finite sets [Wang]
e finite graphs [Bichon]
e finite-dimensional Hilbert spaces [van Daele-Wang]
e finite (resp., compact) metric spaces [Banica] (resp. [Goswami])
e Riemannian manifolds [Bhowmick-Goswami]

One may impose additional hypotheses on coactions to get results,
but of course, these conditions are analytic in nature.



FURTHER QUESTIONS
AND DIRECTIONS....

Computations are a pain. Write a program to do this.

Pick a class of algebras. Pick a class of Hopf algebras. Perhaps impose
some conditions on Hopf action. Is there quantum symmetry?

Use the machinery of tensor categories/ fusion categories
to understand Hopf actions.

This has been done in functional analysis & geometry. Topology?

This will be useful to physicists.

Investigate new applications.
Then tell me about this.
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