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CHAPTER I

Introduction

1.1 Overview

Noncommutative rings and their representations have long had a presence in math-

ematics, at least since the birth of quantum mechanics in the 1930s gave rise to the

Weyl algebra. To study these objects, we naturally first use algebraic techniques,

yet when these methods fail, one must reach outside the world of algebra. Recently

the development of noncommutative projective algebraic geometry studies noncom-

mutative rings and their representations by exploiting the interplay of commutative

graded rings and projective geometric objects in classical algebraic geometry. This

thesis contributes to this enterprise by enlarging the class of noncommutative rings

which have been analyzed in this fashion.

Let k denote an algebraically closed field of characteristic not equal to 2 or 3. A k-

algebra A is connected graded if A =�
i∈N Ai is N-graded with A

0

= k. Furthermore

we always consider algebras that are finitely generated in degree one. To exhibit

classes of noncommutative graded algebras that are analyzed with techniques of

noncommutative projective algebraic geometry, we provide a few historical remarks.

In the mid-1980s, Michael Artin and William Schelter launched noncommutative

projective algebraic geometry in their attempt to complete the following project.

1
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Classify the noncommutative graded analogues of

the polynomial ring in three variables.

This task proved di�cult as the ring-theoretic and homological behavior of these

rings could not be determined using purely algebraic techniques. First it is necessary

to clarify what is meant by a noncommutative analogue of k[x, y, z]. Artin and

Schelter settled on the following definition.

Definition I.1. [AS87] A connected graded ring A is called a three-dimensional

Artin-Schelter (AS) regular algebra if A satisfies the following three properties:

(i) global dimension 3;

(ii) finite Gelfand Kirillov dimension; and

(iii) the AS-Gorenstein condition: ExtiA(k,A) = �i,3 ⋅ k.
A few years later, the classification of three-dimensional AS-regular algebras was

achieved in the seminal paper of Michael Artin, John Tate, and Michel van den Bergh

[ATVdB90]. The toughest challenge was the investigation of the following family of

algebras.

Definition I.2. The three-dimensional Sklyanin algebras, denoted by S(a, b, c)
or Skly

3

, are generated by three noncommuting variables x, y,z, subject to three

relations:

(1.1)

ayz + bzy + cx2 = 0
azx + bxz + cy2 = 0
axy + byx + cz2 = 0

for [a ∶ b ∶ c] ∈ P2

k �D where

D = {[0 ∶ 0 ∶ 1], [0 ∶ 1 ∶ 0], [1 ∶ 0 ∶ 0]} ∪ {[a ∶ b ∶ c] � a3 = b3 = c3 = 1}.
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This definition is more general than the standard definition given in [ATVdB90].

Namely the latter is associated to the geometry of a smooth cubic curve in P2,

whereas our version is associated to either P2 or a cubic curve in P2 (Theorem I.4).

We now provide a brief description of Artin-Tate-van den Bergh’s geometric ap-

proach to understanding noncommutative graded rings. To contrast with the non-

commutative setting, note that the geometric object typically associated to a com-

mutative graded ring is a projective scheme Proj, the set of all homogeneous prime

two-sided ideals except the irrelevant ideal. One associates to the polynomial ring

in two variables k[x, y], for example, the projective line Proj(k[x, y]):=P1. However,

noncommutative graded rings do not have many two-sided ideals in general. For

instance, let Rq be the ring generated by noncommuting variables x, y, subject to

the relation xy = qyx for q nonzero, not a root of unity (a noncommutative analogue

of k[x, y]). Then Proj(Rq) consists of merely three non-irrelevant prime ideals! Un-

less one wants to consider a space of three points corresponding to the ring Rq, an

alternative geometry is required.

Hence given a noncommutative ring A, rather than employing ideals, the points

of the corresponding geometric object are thought of module-theoretically. More

explicitly, a noncommutative point is associated to the following A-module, which

behaves like a homogeneous coordinate ring of a closed point in the commutative

setting.

Definition I.3. A point module over a graded ring A is a cyclic graded left A-

module M =�
i≥0 Mi where dimkMi = 1 for all i ≥ 0.

The parameterization of point modules leads us to a noncommutative general-

ization of the commutative object Proj. Namely for an arbitrary connected graded

algebra A, the parameterization of isomorphism classes of A-point modules (if it ex-
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ists as a projective scheme) is called the point scheme X of A; see Definition II.6.

In fact, the point scheme of Rq is P1, yet such a predictable parameterization does

not always occur; cf. Theorem I.4. If R is a commutative graded ring generated in

degree 1, then the point scheme of R is simply Proj(R).

Returning to algebra, we build a (noncommutative) graded ring B corresponding

to the point scheme X of A. Furthermore this ring B is often used to study the

ring-theoretic behavior of A as we will see later. Now to build B, take a projective

scheme X, with invertible sheaf L and automorphism � on X. Then one can form the

twisted homogeneous coordinate ring B = B(X,L,�) as defined in Definition

II.9. In fact when � = idX , then we get the commutative section ring B(X,L) of X
with respect to L, a ring that is typically used to understand (coherent sheaves on)

projective schemes (Theorem II.1).

Thus point schemes and twisted homogeneous coordinate rings are respectively

genuine noncommutative analogues of projective schemes Proj and section rings

B(X,L) in classical algebraic geometry.

Now in the theorem below, Artin-Tate-van den Bergh use these constructions to

provide a geometric framework specifically associated to the Sklyanin algebras.

Theorem I.4. [ATVdB90] (i) The point scheme of S = S(a, b, c) is isomorphic to:

(1.2) E = Eabc ∶ V �(a3 + b3 + c3)xyz − (abc)(x3 + y3 + z3)� i⊂ P2.

Here E = P2 if one of the a, b, or c is 0 and the sum of the other two parameters

is 0; E is a smooth cubic curve if abc ≠ 0 and (3abc)3 ≠ (a3 + b3 + c3)3; and E is a

singular cubic curve otherwise.

(ii) Assume that E is smooth. Given the invertible sheaf L = i∗OP2(1) on E, and a

certain automorphism � of E (which corresponds to the shift functor on point mod-
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ules), we have that the twisted homogeneous coordinate ring B = B(E, i∗OP2(1),�)
is a noetherian domain. Moreover dimkB0

= 1, and for d ≥ 1: dimkBd = 3d if E is a

smooth cubic curve; and dimkBd = dimk k[x, y, z]d if E = P2.

(iii) If E ≠ P2, then there exists a regular normal element g ∈ S, homogeneous of

degree 3, so that B ≅ S�Sg as graded rings. Moreover if E is also smooth, then Skly
3

is also a noetherian domain, with the same Hilbert series as the polynomial ring in

three variables; namely HS(t) = (1 − t)−3.
Thus part (iii) implies that twisted homogeneous coordinate rings play a crucial

role in determining the ring-theoretic and homological behavior of the corresponding

Sklyanin algebras. The aim of this dissertation is to exploit and expand the above ge-

ometric techniques to study variants of Sklyanin algebras and other noncommutative

connected graded rings.

We now list the contents of each chapter in more depth. Chapter 2 contains

the background material for this dissertation. Chapter 3 analyzes degenerations

of Sklyanin algebras with use of generalized twisted homogeneous coordinate rings;

introductory remarks are provided in 1.2. Chapters 4 and 5 investigate the repre-

sentation theory of ungraded deformations of Sklyanin algebras; introduction given

in 1.3. Computational results and computer routines are presented in Chapter 4

and in the appendix; a synopsis of these results is provided in 1.4.

1.2 Generalizing twisted homogeneous coordinate rings

During the last few years, a number of examples of (even noetherian) algebras

have appeared for which the techniques of [ATVdB90, ATVdB91] are inapplicable.

This is because the point modules for these algebras cannot by parameterized by a

projective scheme of finite type (see for example [KRS05]). Consequently one cannot



6

form a corresponding twisted homogeneous coordinate ring. In Chapter 3, we explore

a recipe suggested in [ATVdB90, 3] for building a generalized twisted homogeneous

coordinate ring for any connected graded ring. In particular, we provide a geometric

approach to examine the following degenerations of Sklyanin algebras. Moreover the

results listed in this section appear in [Wal09].

Definition I.5. The rings S(a, b, c) from Definition I.2 with [a ∶ b ∶ c] ∈D are called

degenerate Sklyanin algebras, denoted by Sdeg.

The name is motivated by the fact that the geometry of Sdeg involves a degenerate

cubic curve. On the other hand, we establish algebraic properties of Sdeg in the

following theorem.

Theorem I.6. (Lemma III.8, Corollary III.9, Propositions III.11 and III.12) The

degenerate three-dimensional Sklyanin algebras have Hilbert series

HS
deg

(t) = (1 + t)(1 − 2t)−1. They are neither left or right noetherian, nor are they

domains. Moreover Sdeg is Koszul and has both infinite global dimension and infinite

Gelfand Kirillov dimension. We also have that Z(Sdeg) = k.
By this result, we see that degenerate Sklyanin algebras possess entirely di↵erent

ring-theoretic characteristics than Sklyanin algebras. However we can still construct

geometric data for these algebras with the methods of [ATVdB90]. More precisely,

we make use of the point modules over Sdeg to construct a generalization of a point

scheme for Sdeg. Although this geometric data is not of finite type, the geometry

of degenerate Sklyanin algebras is remarkably nice and still describes their class of

point modules. We provide the details of this phenomenon in the theorem below.
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Definition-Lemma I.7. [ATVdB90] Let A be a connected graded ring generated by

n + 1 elements of degree one.

1. A truncated point module of length d over A is a cyclic graded left A-

module M =�
i≥0 Mi where dimkMi = 1 for 0 ≤ i ≤ d and dimkMi = 0 for i > d.

2. The dth truncated point scheme Vd parameterizes isomorphism classes of

length d truncated point modules.

3. Assume that the inverse limit of {Vd}, with respect to restrictions of projection

maps onto the first d−1 coordinates of (Pn)×d, stabilizes to a projective scheme.

This inverse limit is referred to as the point scheme of A, and it parameterizes

A-point modules.

Theorem I.8. (Proposition III.26) For d ≥ 2, the truncated point schemes

Vd ⊂ (P2)×d corresponding to Sdeg are isomorphic to either:

(i) a union of three copies of (P1)× d−1
2 and three copies of (P1)× d+1

2 , if d is odd, or;

(ii) a union of six copies of (P1)× d

2 , if d is even.

As previously mentioned, the inverse limit of the truncated point schemes, Vd,

of degenerate Sklyanin algebras do not stabilize to produce a projective scheme of

finite type. Hence we cannot mimic the approach of [ATVdB90] to construct a

twisted homogeneous coordinate ring associated to Sdeg. So to build a graded ring

associated to the geometry of Sdeg we instead make use of the Vd, or rather the point

scheme data of Sdeg, and a method from [ATVdB90, 3.17] that supplies us with

the recipe to construct the following geometric ring.

Definition I.9. [ATVdB90, 3] The point parameter ring P =�
d≥0Pd is an

N-graded, associative ring corresponding to the subschemes Vd of (P2)×d (Definition
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I.7). Here Pd =H0(Vd,Ld) where Ld is the restriction of the invertible sheaf

pr∗
1

OP2(1)⊗ . . .⊗ pr∗dOP2(1)
to Vd. The multiplication map Pi × Pj → Pi+j is defined by taking global sections of

the isomorphism pr∗
1,...,i(Li)⊗OV

i+j pr
∗
i+1,...,i+j(Lj) ∼→ Li+j.

Point parameter rings have rarely appeared in the literature since their origin in

[ATVdB91], so these rings are not understood in general. The next results of this

thesis describe the behavior of the first non-trivial examples of these rings. As a

consequence, we extend the class of noncommutative algebras that are traditionally

studied in noncommutative projective algebraic geometry to all connected graded

algebras (for which a point scheme does not necessarily exist).

Theorem I.10. (Proposition III.35, Theorem III.36, Corollary III.40) The point

parameter ring P = P (Sdeg) is generated in degree one. Since (Sdeg)1 ≅ (P (Sdeg))1,
we have that P is a factor of the corresponding Sdeg. Furthermore it has Hilbert

series HP (t) = (1 + t2)(1 + 2t)[(1 − 2t2)(1 − t)]−1.
Thus Theorem I.10 yields a result surprisingly similar to Theorem I.4 (pertaining

to the ring surjection from Skly
3

onto B(E)), despite the fact that by Theorem I.6,

the rings Skly
3

and Sdeg are completely unalike.

Corollary I.11. (Corollary III.41) The ring P = P (Sdeg) has exponential growth.

Moreover P is neither right noetherian, Koszul, nor a domain.

Therefore the behavior of P (Sdeg) resembles that of Sdeg and it is natural to ask if

other noncommutative algebras can be analyzed in a similar fashion. Some of these

further directions are discussed in 3.4.

Section 3.5 in particular discusses the investigation of the rings Sdeg and P (Sdeg)
via Piontkovskii and Polishchuk’s recent work on coherent noncommutative algebraic
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geometry [Pio08, Pol05]. Their results thus far include the classification of noncom-

mutative projective lines and the definition of a coordinate ring of a noncommutative

coherent projective scheme. Now if Sdeg and P (Sdeg) are coherent, then the rings will

contribute to the theory on coherent noncommutative projective schemes. In Propo-

sition III.55, we show that the degenerate Sklyanin algebras are indeed coherent.

However, we do not know if this is true for P (Sdeg).
1.3 Representations of deformed Sklyanin algebras

Traditional techniques of noncommutative projective algebraic geometry analyze

(noncommutative) graded rings with projective geometric data. Chapter 4 considers

the question of how one might study ungraded variants of these algebras. Specifi-

cally, we examine the following ungraded deformations of three-dimensional Sklyanin

algebras.

Definition I.12. For i = 1,2,3, let a, b, c, di, ei be scalars in k with [a ∶ b ∶ c] ∉ D
(Definition I.2). The deformed Sklyanin algebra, Sdef , is generated by three

noncommuting variables x, y,z, subject to three relations:

ayz + bzy + cx2 + d
1

x + e
1

= 0
azx + bxz + cy2 + d

2

y + e
2

= 0
axy + byx + cz2 + d

3

z + e
3

= 0.
One can show that for (almost all) parameters (a, b, c), the ring Sdef is a PBW-

deformation of Skly
3

[BT07][EG, 3]. The study of these rings is physically moti-

vated as they first appeared in the study of vacua in string theory. More precisely, the

analysis of m-dimensional simple modules over Sdef is relevant to the study of super-

symmetric Yang-Mills theories with m D-branes [BJL00]. We now discuss significant

results towards achieving the following aim:
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Classify the simple finite-dimensional modules over the algebra Sdef .

Our approach is as follows. First, homogenize the relations of Sdef with a central

element w. Then, study the representation theory of the resulting central extension

D of Skly
3

. Since simple finite-dimensional D-modules are precisely those over Skly
3

or Sdef (Lemma II.32), our objective can be reformulated in terms of studying the

(not necessarily graded) simple finite-dimensional modules over the graded algebras,

Skly
3

and D. The latter are nice objects in the sense of [Sta02], as they are three-

and four-dimensional AS-regular algebras respectively.

Results on the classification of simple finite-dimensional modules over Skly
3

are

provided in Chapter 4, and these are summarized in Theorem I.13 below. First we

consider the following properties of Skly
3

. Note that Skly
3

satisfies a polynomial

identity or is PI [MR01, Chapter 13] precisely when ��� = n < ∞ (Theorem I.18,

[For74, ST94]). This scenario is of interest in representation theory as there are

many finite-dimensional simple modules over such rings [BG97, 3]. Recall that

S = Skly
3

contains a regular central element g, homogeneous of degree 3, so that

S�Sg ≅ B a twisted homogeneous coordinate ring (Theorem I.4). Moreover B is PI

if and only if S is PI.

Theorem I.13. (Propositions IV.13, IV.16, IV.18, IV.19)

(i) In the case of ��� =∞, the only finite-dimensional simple module of Skly
3

is the

trivial module.

(ii) Assume that ��� <∞. Let M be a finite-dimensional simple module over Skly
3

.

(a) If M is g-torsionfree, then dimkM = ��� when (3, ���) = 1;
and ����3 ≤ dimkM ≤ ��� when (3, ���) ≠ 1.

(b) Otherwise if M is g-torsion, then dimkM = ���.
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In fact, we will see in Proposition I.21 that PIdeg(S) = PIdeg(B) = ��� when ��� <∞.

Therefore to study the representation theory of Sdef , we now analyze the repre-

sentation theory of D. This is done in Chapter 5. Fortunately, the noncommutative

geometry of D has been examined in [LBSVdB96]. It is known that the point scheme

PD of D is the union of the point scheme of Skly
3

(the object E from Theorem I.4)

and a finite set of points {si}. The automorphism �D on PD is given by � on E

and the identity on the finite set of points. Therefore ��D� = ���, and conjectures

pertaining to the aforementioned research objective are formed involving this order.

We claim the following dichotomy for D.

Conjecture I.14. (Conjecture V.9) The central extension D is either PI or all

simple finite-dimensional D-modules are 1-dimensional.

In fact, we can describe the class of simple 1-dimensional D-modules.

Lemma I.15. (Lemma V.5, Corollary V.7) The nontrivial 1-dimensional simple

D-modules are simple quotients of the point modules:

� D

Dy
1

+Dy
2

+Dy
3

� V(y
1

, y
2

, y
3

) = si ∈ PD� .
The set S = {si} is described in the cases of physical significance in the appendix.

The approach to verifying Conjecture I.14 first involves the analysis of (fat) point

modules, which by definition are 1-critical graded modules (of multiplicity greater

than 1) over D. (These di↵er slightly from the commutative version.)

Lemma I.16. [LS93] [SS93] Let M be a simple finite-dimensional D-module. Then

M is a quotient of some 1-critical graded module. Moreover if M arises as the

quotient of a fat point module, then dimkM > 1.
Hence given a central extension D of Skly

3

, we aim to show that either fat point

modules of D do not exist or D is PI. Now we proceed by studying D according to
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��D� = ���. If ��� = ∞, then D is not PI (Proposition V.10). For such a D, we study

its fat point modules in 5.4, which we conjecture do not exist.

On the other hand, our claim pertaining to the PI property for the central ex-

tension D of Skly
3

is as follows. If ��� = 1,2, then we claim that the center of D

is generated by only two elements of low degree, so D would not be PI in this case

(Conjecture V.12, V.13). In fact in 5.4, we also analyze the fat point modules of

D for the ��� = 2 case. On the other hand if ��� = 3,6, then we claim that D is PI

(Conjecture V.15, Remark V.16); evidence is provided in 5.3. In summary:

Conjecture I.17. For di and ei generic, D is not PI when ��� = 1,2, and is PI when

��� = 3 or 6.

Thus in contrast with Sklyanin algebras (i.e. Theorem I.18 below), we believe

that the relationship between order of the automorphism �D and the structure of

the center of D is quite subtle.

1.4 Computational results on Skly
3

Certain results presented in Chapter 4 and in the appendix deal with compu-

tational aspects of the three-dimensional Sklyanin algebras. Recall that Skly
3

=
S(a, b, c) comes equipped with geometric data: E, a cubic curve or P2, with au-

tomorphism �; and these are defined by the parameters a,b,c. For the result of

this section we assume that E is smooth, equivalently we have that either: one of

a, b, c equals 0 with the sum of the other two parameters equal to 0; or abc ≠ 0 and

(a3 + b3 + c3)3 ≠ (3abc)3. We determine the role of these parameters in governing the

behavior of the Sklyanin algebra, work motivated by the following crucial result of

[ATVdB91]:
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Theorem I.18. [ATVdB91, Theorem 7.1] The algebra Skly
3

= S(a, b, c) is module

finite over its center if and only if ��� <∞.

In fact, the first condition is equivalent to S being PI [For74, ST94]. Hence if the

conditions of the above theorem hold, then the behavior of S(a, b, c) is intimately

tied to the structure of its center; how ‘close the tie’ is made precise by the PI degree.

Furthermore recall that the twisted homogeneous coordinate ring B(E,L,�) arises
as a homomorphic image of S (Theorem I.4), so B is PI when S is PI. This naturally

gives rise to the following problems.

Questions I.19. .

1. Fix n ∈ N. Let �abc be the automorphism of the point scheme Eabc introduced in

Theorem I.4. Classify parameters (a, b, c) for which �abc has order n.

2. Given (a, b, c) with ��abc� <∞, determine the PI degree of the rings S(a, b, c) and
B(Eabc, i∗OP2(1),�abc).

The first problem has been settled for Sklyanin algebras associated to elliptic

curves over Q [LB94]. For an arbitrary field k, however, the question remains open.

Partial progress is reported in Proposition A.1 in the appendix. More precisely, we

have the following result.

Proposition I.20. Given n = 1, . . . ,6, we know the parameters (a, b, c) of S for

which ��abc� = n.
On the other hand, the result below completes the second task.

Proposition I.21. (Corollaries IV.15 and IV.19) Provided parameters a, b, c of

Skly
3

= S(a, b, c) for which ��abc� < ∞, both the PI degree of S(a, b, c) and the PI

degree of B(Eabc, i∗OP2(1),�abc) are equal to ��abc�.



CHAPTER II

Background Material

This chapter discusses the background material for the study of the noncommu-

tative geometry of degenerate Sklyanin algebras, and the representation theory of

deformed Sklyanin algebras. In 2.1 we introduce noncommutative projective alge-

braic geometry (NCPAG), a field launched by the study of noncommutative graded

rings via techniques of classical algebraic geometry. The next section introduces the

notion of Gelfand-Kirillov dimension, which pertains to the growth of the algebras

and of the modules considered in this thesis. Section 2.3 discusses the representation

theory of (not necessarily graded) noncommutative rings with methods from NC-

PAG. Lastly, 2.4-2.5 are dedicated to the theory behind polynomial identity rings

and Bergman’s diamond lemma respectively.

Notation. Fix a Z-graded ring A generated in degree one. As presented in [AZ94,

2], we consider the following module categories:

A-Mod, the category of left A-modules;

A-mod, the category of noetherian left A-modules, which is simply the category

of finitely generated left A-modules if A is noetherian;

A-Gr, the category of Z-graded left A-modules with degree preserving

homomorphisms;

14
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A-gr, the subcategory of A-Gr consisting of noetherian graded left A-modules.

A module M ∈ A-Gr is right bounded if Mi = 0 for all i >> 0. Moreover M is

torsion if all m ∈M , we have that A≥t ⋅m = 0 for some t. This is equivalent to the

condition that M is the (not necessarily finite) sum of right bounded modules. Now

we form the following categories:

Tors(A), the full subcategory of A-Gr consisting of torsion graded left A-modules;

tors(A), Tors(A) ∩ A-gr, which is the category of finite dimensional graded

A-modules if A is N-graded.

We can also form the quotient categories:

A-QGr = A-Gr/Tors(A);

A-qgr = A-gr/tors(A).

The objects of the second category, A-qgr, consist of equivalence classes [M ] for

M ∈ A-gr. Namely we have that M ∼ N if there exists an integer n for which

M≥n ≅ N≥n, where M≥n =�
d≥nMd.

Furthermore for a projective variety X, we also consider (q)coh(X), the category

of (quasi-)coherent sheaves on X.

2.1 Noncommutative projective algebraic geometry (NCPAG)

By no means is this a complete introduction to noncommutative projective al-

gebraic geometry; see the survey article of Sta↵ord and van den Bergh [SvdB01]

for a more detailed discussion. The paper [AZ94] is the standard reference to the

categorical approach to this field.
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2.1.1 Commutative motivation

The field of noncommutative projective algebraic geometry is motivated by tech-

niques of classical projective algebraic geometry. Namely we develop noncommu-

tative analogues of projective schemes and corresponding homogeneous coordinate

rings to study noncommutative graded rings that are suspected to behave like com-

mutative graded rings. For instance such methods can be used to determine whether

a noncommutative graded ring A =�
i∈N Ai has the Hilbert series as that of a polyno-

mial ring k[x
1

, . . . , xn], to say:

HA(t) ∶=�
i∈NdimkAi ⋅ ti = (1 − t)−n.

Let us recall some results of classical projective algebraic geometry used to study

commutative graded algebras. The remaining material of this subsection is sum-

marized from [Har77, II.5]. First we construct projective geometric data from a

given algebra, then we use this data to build a geometric ring. Let R =�
i∈N Ri be an

N−graded commutative algebra, generated in degree 1 over R
0

= k. We first associate

to R the geometric object Proj(R), which by definition is the set of all homogeneous

prime ideals p except the irrelevant ideal R+ ∶=�
i≥1 Ri. In particular, the (not neces-

sarily closed) points of the projective scheme X = Proj(R) are in 1-1 correspondence

with such p. However noncommutative rings do not possess many two-sided ideals

in general, and since we want these methods to generalize, we instead consider the

1-1 correspondence between points of X and quotients of R by these prime ideals

p. Specifically, each closed point of X corresponds to a homogeneous prime ideal p

whose quotient, R�p, is a cyclic graded R-module with Hilbert series Hk[x](t) = ∞�
i=0 ti.

Next we consider an invertible sheaf L of X and construct the section ring B =
B(X,L) ∶=�

d≥0H0(X,L⊗d). Here B has the natural multiplication Bd × Be → Bd+e
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induced from taking global sections of isomorphisms: L⊗d ⊗O
X

L⊗e ≅ L⊗d+e. When

(X,L) are nice (e.g. irreducible and normal, and ample respectively), then B is a

well behaved ring (e.g. a Noetherian domain) [Gro61, Chapter 2], [Smi97, 1].

How does this help us analyze our ring R? This is answered by the following

theorem of Serre.

Theorem II.1. [Ser55, Proposition 7.8] (Serre’s Theorem)

(i) Let R be a commutative graded ring, finitely generated in degree one over a field

R
0

. Let X = Proj(R). Then the functor R-gr → coh(X) sending M to M̃ , induces

an equivalence of categories: R-qgr ∼ coh(X).
(ii) Conversely, let B = B(X,L) where L is an ample invertible sheaf on X. Then

the map M � �∗(M) = �
d≥0H0(X,M ⊗ L⊗d) induces an equivalence of categories:

coh(X) ∼ B-qgr.

(iii) If R defined as in part (i) and B = B(ProjR,O
ProjR(1)), then Rd = Bd for d >> 0.

Hence we have that R-qgr ∼ B-qgr.

Therefore we have that R and B in the theorem above reflect each other ring-

theoretically. In fact if R is normal, then R is isomorphic to B. This discussion and

an example are depicted in the figures below.
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Figure 2.1: Interactions between commutative graded algebras and commutative projective geometry
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Figure 2.2: Example of the discussion in 2.1.1.

2.1.2 Techniques of Artin-Tate-van den Bergh (ATV)

We now discuss techniques of Artin, Tate, and van den Bergh to generalize the

results of 2.1.1 to the noncommutative setting. Let us consider a noncommutative

N−graded ring A = �
i∈N Ai, generated in degree 1 over A

0

= k. To study this ring

geometrically, then we need to make sense of Proj(A) in the noncommutative setting.



19

As mentioned in Chapter 1, if A = Rq = k{x, y}�(xy − qyx) where q ≠ 0,
√
1, then

A has only three two-sided homogeneous non-irrelevant prime ideals. Instead we

consider the modules given in Figure 2.1, and associate to A a geometric object X

whose closed points are in 1-1 correspondence with the following modules.

Definition II.2. A cyclic graded left A−module M with Hilbert series HM(t) = ∞�
i=0 ti

is called a point module of A.

Loosely speaking if X exists, then it is a commutative projective scheme which

is referred to as the point scheme of A (see Definition-Lemma II.6 for the formal

statement).

Noncommutative Algebra Noncommutative Geometry
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Figure 2.3: ATV technique: Algebra to Geometry

Since point modules are generally di�cult to understand, we first parameterize

the following modules.

Definition II.3. A truncated point module of A of length d is a cyclic graded

left A-module M with Hilbert series HM(t) = d−1�
i=0 ti.

The parameterization of truncated point modules is achieved by the following method.
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Step 1: Present A as T (V )�I where V is an n + 1 dimensional k-vector space, T (V )
is the free algebra k{x

0

, . . . , xn}, and I is the two-sided ideal of relations.

Step 2: Given a relation f of degree d, we have that f ∈ Id ⊆ V ⊗d ≅ ((V ∗)⊗d)∗,
which induces the linear functional f̃ ∶ (V ∗)×d → k.

Step 3: Next form truncated point schemes:

Definition II.4. The dth truncated point scheme of A is

Vd ∶= {(p1, . . . , pd) ∈ P(V ∗)×d � f̃(p1, . . . , pd) = 0,∀f ∈ Id},
which lies in (Pn)×d. Observe that Vd is the set of zeros of multilinearizations of the

degree d relations of A.

Step 4: Finally we have the parameterization of truncated point modules of A via

the next result.

Lemma II.5. [ATVdB90, Proposition 3.9] The scheme Vd parameterizes the set

of isomorphism classes of truncated point modules of length d. More precisely, Vd

represents the functor of flat families of such modules.

Proof sketch. We verify the bijective correspondence. Given a point (p
1

, . . . , pd) ∈ Vd

where pi = [�0i ∶ �1i ∶ � ∶ �ni], we can build a truncated module of length d,

M = d−1�
j=0 k ⋅mj, where mj is the generator of the jth graded piece of M . Here the A-

action of M is: xi ∗mj = �ij ⋅mj+1. Conversely when given such a truncated module,

the scalars �ij from its A-action yield a point in Vd.

Now we can parameterize the set of isomorphism classes of point modules.

Notation. Let ⇡d ∶ (Pn)×d+1 → (Pn)×d be projection onto the first d coordinates of

(Pn)×d+1. Note that Vd ⊆ (Pn)×d and that ⇡d(Vd+1) ⊆ Vd according to [ATVdB90,

Equation (3.18)]. We also refer to the induced map Vd+1 → Vd by ⇡d.
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Definition-Lemma II.6. [ATVdB90, Corollary 3.13] The pairs (Vd,⇡d ∶ Vd+1 → Vd)
form an inverse system of schemes. Note that if one of the projections ⇡d is an

isomorphism, then the inverse system {Vn} is constant for n ≥ d. Hence lim←�Vn ≅ Vd

and we denote this limit by X. We call X the point scheme of A.

In general we refer to the family {(Vd,⇡d)}d≥0 as the point scheme data of A.

More generally we can consider the pro-scheme structure of lim←�Vd, though this

limit may not have carry the structure of a projective scheme. Refer to [NSb] for

details of its realization of as an algebraic stack.

Let us illustrate some examples of point scheme data.

Examples II.7. (a) Let A = k{x, y, z}, the free algebra. Since there are no relations

of A, we have that Vd is (P2)×d . The point scheme data does not stabilize to form a

projective scheme, yet note that lim←�Vd ≅ (P2)×∞. Hence the highly noncommutative

algebra k{x, y, z} is associated to the large geometric projective object (P2)×∞.
(b) For the other extreme, consider A = k[x, y, z], the polynomial algebra. We have

that Vd is isomorphic to the diagonal {(p, . . . , p) ∈ (P2)×d � p ∈ P2}. A computation

of V
2

is given below. Now we see that the point scheme of A is isomorphic to P2.

(b’) We explicitly show how V
2

is the set of zeros of multilinearizations of degree 2

relations of A = k[x
0

, x
1

]. To begin, note that

V2 = {([�01 ∶ �11], [�02 ∶ �12]) ∈ P1[x
01

∶x
11

] × P1[x
02

∶x
12

] � f̃([�01 ∶ �11], [�02 ∶ �12]) = 0, ∀f ∈ I2}.
Observe that the only relation of A of degree two is

f = x
0

x
1

− x
1

x
0

⊆ V ⊗ V ∶= (k ⋅ x
01

⊕ k ⋅ x
11

)⊗ (k ⋅ x
02

⊕ k ⋅ x
12

).
Thus f̃ ∶ V ∗×V ∗ → k is defined by f̃(�) = �(f) ∶= x

01

x
12

−x
11

x
02

. By the construction

of V
2

, we have that �
01

�
12

− �
11

�
02

= 0. In other words, [�
01

∶ �
11

] = [�
02

∶ �
12

] and
V
2

= {(p, p) ∈ P1 × P1 � p ∈ P1} as desired.
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(c) The point scheme of a commutative ring R generated in degree one is isomor-

phic to Proj(R). Hence point schemes are genuine noncommutative analogues of

commutative projective schemes.

Noncommutative Algebra Noncommutative Geometry
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Figure 2.4: Examples of ATV technique: Algebra to Geometry

Another piece of geometric data that we frequently employ is the following auto-

morphism � of the point scheme X.

Definition II.8. Assuming existence, let X be the point scheme of a connected

graded k-algebra A. For a point p ∈X, let M(p) be a corresponding A-point module.

We say that an automorphism � of X is induced by the shift functor on point

modules of A if M(p)[1]≥1 =M(�−1p) for all p ∈X.

All automorphisms of point schemes in this thesis are induced by the shift functor

on point modules; see [ATVdB91, 6] for more details about this notion.

Now we return from noncommutative geometry back to noncommutative algebra,

under the vital condition that lim←�Vd stabilizes as a projective scheme (to X). We

can then construct the coordinate ring below.
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Notation. Given a projective scheme X, an invertible sheaf L on X, and � ∈ Aut(X),
we write L� for the pullback of L along �. For any open set U of X, we have that

L�(U) = L(�U).
Definition II.9. [ATVdB90, 6] Given a point scheme X as above, let L be an

invertible sheaf on X, and let � ∈ AutX. The twisted homogeneous coordinate

ring B = B(X,L,�) of X with respect to L and � is an N-graded ring:

B =�
d∈NH0(X,Ld)

where L
0

= OX , L1 = L, and Ld = L ⊗O
X

L� ⊗O
X

. . . ⊗O
X

L�d−1
for d ≥ 2. Here

multiplication is given by the natural map:

Bd ⊗Be ≅H0(X,Ld)⊗k H0(X,Le)
≅H0(X,Ld)⊗k H0(X,L�d

e ) ��→H0(X,Ld+e) ≅ Bd+e
where � is obtained by taking global sections of the isomorphism Ld⊗O

X

L�d

e ≅ Ld+e.
Observe that when � = id�X , then B(X,L,�) is the commutative section ring

B(X,L) from 2.1.1 (see Figure 2.1). We illustrate in the following figure the interac-

tion between noncommutative algebra and geometry in the fashion of Artin-Tate-van

den Bergh as described above; an example is then provided.
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Figure 2.5: Interactions between noncommutative algebra and noncommutative geometry

Now consider the ring Rq = k{x, y}�(yx−qxy) where q ≠ 0,√1, which is suspected

to behave like a polynomial ring in two variables.

Lemma II.10. There is a 1-1 correspondence between closed points of P1 and iso-

morphism classes of point modules over Rq. Hence the point scheme of Rq is P1.

Proof. First note that the Hilbert series HR
q

(t) is equal to (1 − t)−2.
Take a closed point [↵ ∶ �] ∈ P1. Here [↵ ∶ �] represents an equivalence class of

tuples (p
1

, p
2

) ∈ k2 � {(0,0)} with (p
1

, p
2

) = (�↵,��) for some nonzero � ∈ k. The

point [↵ ∶ �] is in bijective correspondence with the left ideal Rq(↵y − �x) of Rq.

Now the cyclic graded left Rq-module M = Rq�Rq(↵y−�x) is an Rq-point module as

HM(t) = HR
q

(t) −HR
q

(↵y−�x)(t) = HR
q

(t) − tHR
q

(t) = (1 − t)−1.
Conversely let M be a point module over Rq with generator m. Then annR

q

(m) =
{r ∈ Rq � rm = 0} is a left ideal of Rq, and M ≅ Rq�annR

q

(m). Since HM(t) = (1−t)−1
and HR

q

(t) = (1 − t)−2, we have that H
ann

R

q

(m)(t) = t(1 − t)−2. Hence annR
q

(m) is
of the form Rqa where a ∈ (Rq)1. In other words, annR

q

(m) = Rq(↵y − �x) for some
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(↵,�) ∈ k2 � {(0,0)}. Moreover M is isomorphic to another Rq-point module M ′
with generator m′ if and only if annR

q

(m) = annR
q

(m′). Here by the same reasoning

annR
q

(m′) = Rqa′ = Rq(↵′y − �′x) for some a′ ∈ (Rq)1 and (↵′,�′) ∈ k2 � {(0,0)}.
Hence M ≅M ′ if and only if a = �a′ for some nonzero � ∈ k. Therefore the module

M corresponds to the closed point [↵ ∶ �] ∈ P1.

Lemma II.11. Given the projective line P1 with invertible sheaf L = OP1(1) and

automorphism �[x ∶ y] = [x ∶ qy], we have that the twisted homogeneous coordinate

ring B(P1,L,�) is isomorphic to the ring Rq.

Proof. We refer the reader to [SvdB01, Example 3.4].

Noncommutative Algebra Noncommutative Geometry
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Figure 2.6: Example of the discussion in 2.1.2.

Observe that the example above did not require the computation of truncated point

modules; this is rarely the case.

Though tedious, constructing twisted homogeneous coordinate rings is worthwhile

due to the following remarkable results of Artin-van den Bergh and Keeler. First we

consider some terminology.



26

Definition II.12. [AVdB90] Given a projective scheme X, an invertible sheaf L on

X, and � ∈ Aut(X), then L is right �-ample if for all F ∈ coh(X) and n >> 0:
(a) F ⊗Ln is generated by global sections where Ln = L⊗O

X

L� ⊗O
X

⋅ ⋅ ⋅ ⊗O
X

L�n−1
;

(b) Hq(X,F ⊗Ln) = 0 for all q > 0.
We say that L is left �-ample if (a) and (b) hold for the sheaf F�n ⊗Ln.
Theorem II.13. [Kee00, Corollary 5.1] The right �-ample and left �-ample condi-

tions are equivalent.

The concept of �-ampleness is rather delicate [Kee00], but for the work in this

thesis, we point out that invertible sheaves on irreducible curves and on projective

spaces are ample if and only if they are �-ample [Kee00, Proposition 5.6, Corollary

5.4] [Sta].

Theorem II.14. [AVdB90] (Noncommutative Serre’s Theorem) If X is an irre-

ducible projective scheme, L is a �- ample invertible sheaf, then the twisted homoge-

neous coordinate ring B = B(X,L,�) is a Noetherian domain. Secondly we have an

equivalence of categories: B-qgr ∼ coh(X).

We can often relate our connected graded ring A to a twisted homogeneous coor-

dinate ring B through a ring surjection A� B, and in this case the nice properties

of B (discussed in Theorem II.14) lift to A. This is extremely useful when the ring-

theoretic behavior of A cannot be determined using purely algebraic techniques; an

example of such an algebra A is provided in the next subsection.

2.1.3 Analysis of Sklyanin algebras via Artin-Tate-van den Bergh methods

Here we apply methods of Artin-Tate-van den Bergh to study three-dimensional

Sklyanin algebras (Definition I.2), first computing their point schemes..
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Proposition II.15. [ATVdB90, 4] The point scheme X (Definition-Lemma II.6)

of S = Skly
3

is isomorphic to the object Eabc
i⊂ P2 from Equation (1.2):

E = Eabc ∶ V �(a3 + b3 + c3)xyz − (abc)(x3 + y3 + z3)� ⊂ P2,

where E = P2 or a cubic curve. In particular, we have the following statements.

Recall that Vd denotes the dth truncated point scheme of S (Definition II.4).

(i) For d ≥ 2, the morphism ⇡d ∶ Vd+1 → Vd is an isomorphism of varieties.

(ii) The morphism ⇡
1

∶ V
2

→ P2 is an isomorphism onto its image, which is the

object E.

(iii) Let ⇡′
1

∶ V
2

→ P2 be the morphism induced by projection onto the second copy of

P2. Then ⇡′
2

is an isomorphism onto its image, which again is E above.

(iv) The morphism � = ⇡′
1

○ ⇡−1
1

∶ E → E is an automorphism of E. The closed

subvariety V
2

of P2 × P2 then is isomorphic to the graph of �.

Proof. We borrow the presentation of this proof from [Ste, Proposition 5.8.3].

(i) We must show that a point p = (p
1

, . . . , pd) ∈ Vd extends uniquely to a point

p′ = (p
1

, . . . , pd, pd+1) ∈ Vd+1 and that the morphism sending p to p′ is a morphism of

varieties. Consider multilinearizations of the three relations of Skly
3

:

fi ∶= ayizi+1 + bziyi+1 + cxixi+1,
gi ∶= azixi+1 + bxizi+1 + cyiyi+1,
hi ∶= axiyi+1 + byixi+1 + czizi+1.

Note that Vd = V(fi, gi, hi)1≤i≤d−1 ⊆ (P2)×d for d ≥ 2 with V
1

≅ P2. Take Mi to be the

3×3 matrix: ���������
cxi bzi ayi

azi cyi bxi

byi axi czi

���������
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and note that fi = gi = hi = 0 is equivalent to:

Mi ⋅ (xi+1, yi+1, zi+1)T = 0.(2.1)

Moreover fi = gi = hi = 0 is also equivalent to:

(xi, yi, zi) ⋅ Mi+1 = 0.(2.2)

To show the uniqueness of the morphism sending p to p′, we must verify that the

solution (xd+1, yd+1, zd+1) of Equation (2.1) is projectively unique. In other words,

the matrix Md must have rank 2 at every point of Vd. Since Equation (2.2) holds for

i = d− 1, we know that rank(Md)≤ 2. Suppose that rank(Md)=1, i.e. every 2× 2 minor

of Md vanishes. This yields the following set of equations:

c2xdyd = abz2d, b2ydzd = acx2

d, a2xdzd = bcy2d,
a2ydzd = bcx2

d, c2xdzd = aby2d, b2xdyd = acz2d,
b2xdzd = acy2d, a2xdyd = bcz2d, c2ydzd = abx2

d.

We leave it to the reader to show that these equations imply that the point [a ∶ b ∶ c]
is in the set D of Definition I.2, a contradiction. Thus rank(Md) = 2 for every point

of Vd. Moreover since the coordinates of pd+1 are given locally by 2 × 2 minors of Md,

we have that ⇡d is an isomorphism of varieties.

(ii) The image of ⇡
1

∶ V
2

→ P2 is the set of all points [x
1

∶ y
1

∶ z
1

] ∈ P2 so that there

exists [x
2

∶ y
2

∶ z
2

] ∈ P2 with Equation (2.1) satisfied for i = 1. This is equivalent to
{[x

1

∶ y
1

∶ z
1

] ∈ P2 � det(M1) = 0}.
Hence im(⇡

1

) is the closed subset Eabc ⊆ P2 above. Furthermore ⇡
1

is an isomorphism

onto E as rank(M1)=2 for every point [x
1

∶ y
1

∶ z
1

] ∈ E. The function ⇡−1
1

∶ E → V
2

is

a morphism of varieties as it is defined locally by the 2 × 2 minors of M1.
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(iii) This is symmetric to the proof of (ii).

(iv) [ATVdB90, Proposition 3.7] By the definition of �, we have that

V
2

= {(p,�(p)) � p ∈ E} ⊆ P2 × P2

Thus V
2

is isomorphic to the graph of �.

Note that E = P2 if one of a, b, c equals 0 and the sum of the other two parameters

equals 0; E is an elliptic curve if abc ≠ 0 and (a3 + b3 + c3)3 ≠ (3abc)3; and E is a

singular cubic curve otherwise.

Next for E smooth, we form the twisted homogeneous coordinate ring B =
B(E, i∗OP2(1),�) where � is given in Proposition II.15. We have by Theorem II.14

thatB is a Noetherian domain. Moreover if E is a smooth cubic curve, then dimkBd =
3d for d ≥ 1 [ATVdB90, Theorem 6.6(ii)]. If E = P2, then dimkBd = dimk[x, y, z]d for
d ≥ 0. To yield results about Skly

3

, we employ the following result of Artin-Tate-van

den Bergh.

Theorem II.16. [ATVdB90, Theorem 6.8] Assume that the point scheme Eabc of

S(a, b, c) is smooth. If E = P2, then S(a, b, c) is isomorphic to a twisted homogeneous

coordinate ring B(P2,L,�). If E is an elliptic curve, then there is a ring surjection

from S(a, b, c) to the twisted homogeneous coordinate ring B = B(Eabc, i∗OP2(1),�),
with kernel generated by a degree 3 central, regular element (often denoted by g).

Remark II.17. In fact, the element g is explicitly given in [AS87, (10.17)]. It was

computed with A�ne, a noncommutative package for the computer algebra system

Maxima. For S(a, b, c), we have that:

g = c(c3 − b3)y3 + b(c3 − a3)yxz + a(b3 − c3)xyz + c(a3 − c3)x3.

Now we have the result below, which forms the heart of [ATVdB90].
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Corollary II.18. [ATVdB90, Theorem 8.1][RZ08, proof of Corollary 4.6(2)] The

three-dimensional Sklyanin algebras Skly
3

, with a smooth point scheme Eabc, are

Noetherian domains of polynomial growth; indeed their Hilbert series are HS(t) =
(1 − t)−3.

Noncommutative Algebra Noncommutative Geometry
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Figure 2.7: ATV technique applied to Skly3

2.1.4 Linear noncommutative geometry of higher dimensions

We introduced in 2.1.2 the notion of a point module and of a point scheme

associated to a connected graded k-algebra A. Likewise we can define higher di-

mensional noncommutative geometric objects corresponding to A, objects which are

particularly useful in Chapter 5.

Definition II.19. A cyclic graded left A-module M with Hilbert series

HM(t) = (1 − t)−(d+1) is called a d-linear module. In particular, d-linear modules

with d = 0,1,2 are point modules, line modules, and plane modules respectively.

We can also discuss the parameterizations of isomorphism classes of such modules;

these are referred to as d-linear schemes. We point out that the d = 1 schemes,
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or rather line schemes, have been studied in several articles including [ATVdB91,

LBSVdB96, LS93, SV02a, SV02b].

Continuing with our analysis of three-dimensional Sklyanin algebras, we describe

their line and plane schemes below.

Example II.20. [ATVdB91] The line modules of S = Skly
3

are precisely modules

of the form S�Sv where v is a nonzero element of S
1

. These modules are in bijective

correspondence with lines l = V(v) ⊆ P2 = P(S
1

). Thus the line scheme of Skly
3

is

isomorphic to the dual projective space (P2)∗.
Moreover if M is a plane module of Skly

3

, then M must be isomorphic to the left

S-module S. Therefore the plane scheme of Skly
3

is simply a point.

2.1.5 Noncommutative projective schemes

In this section, we briefly discuss the concept of a noncommutative projective

scheme as introduced in [AZ94]. Such structures are prompted by the commutative

setting; we employ Serre’s theorem (Theorem II.1) illustrate this motivation.

Recall that one can associate to any commutative graded algebraR a pair (X,OX),
where X=Proj(R) is the projective scheme introduced in 2.1.1 and OX is its struc-

ture sheaf. The first part of Serre’s theorem states that we have an equivalence of

categories: coh(X) ∼ R-qgr. Here the structure sheaf O
ProjR corresponds to the ob-

ject ⇡(RR), where ⇡ is the quotient functor ⇡ ∶ R-gr→ R-qgr. Hence the commutative

projective scheme Proj(R) corresponds the pair (R-qgr, ⇡(RR)).

On the other hand, the second part of Serre’s theorem states that the category

coh(X) is equivalent to B-qgr, where B = B(X,L) is the section ring where X =

Proj(R) and L an ample invertible sheaf on X. In particular if L = OX(1), then L
corresponds to the image of the shifted module ⇡(BB[1]) under this equivalence.
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Moreover the final part of Serre’s result pertains to the polarized variety (X,

OX(1)); namely that we have an equivalence of categories, R-qgr ∼ B(X,OX(1))-
qgr, provided that R is also generated in degree one.

We now present Artin and Zhang’s scheme construction pertinent to the (noethe-

rian) noncommutative setting.

Definition II.21. [AZ94, 2] Given a graded left-noetherian (not necessarily com-

mutative) k-algebra A, we say that a noncommutative projective scheme is the

triple:

(A − qgr, ⇡(AA), sA).
Here sA is the autoequivalence on A-qgr induced by the shift functor M �M[1] in
A-gr.

For future reference, we will use this construction in 2.3 and 3.5.

2.2 Gelfand-Kirillov dimension

We introduce in this section the notion of Gelfand-Kirillov dimension, a growth

measure of algebras and modules in terms of a generating set. The main reference for

this theory is a text of Krause and Lenagen [KL00], yet we refer to various sources

for the discussion below.

Notation. Unless stated otherwise, let A be a finitely generated, locally finite, N-

graded, connected k-algebra. TakeM ∈ A-gr, and put A≤n ∶= n�
i=0 Ai andM≤n ∶= n�

i=0 Mi.

Definition II.22. [MR01, 8.1.6, 8.1.11] Given finitely generated M ∈ A-gr, define a

function fM ∶ Z→ N by fM(d) ∶=�
n≤ddimkMn.
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1. The Gelfand-Kirillov dimension of M , denoted GKdim(M) is defined to be

s = limd
log fM(d)

log d
.

Equivalently, we have that:

GKdim(M) = lim inf{↵ � ∃c ≥ 0 so that dimk(M≤n) ≤ cn↵ for all n >> 0}.
2. A module M is s-critical if GKdim(M)=s and all of its proper quotients have

strictly smaller Gelfand-Kirillov dimension.

Remark II.23. In the thesis, all graded algebras A under consideration have Hilbert

series HA(t) = (1− t)−r for some positive integer r. Hence graded A-modules M have

Hilbert series of the formHM(t) = qM(t)(1−t)−r for some qM(t) ∈ Z[t, t−1] [ATVdB91,
(2.18,2.19)]. Moreover GKdim(M) is the order of the pole at t = 1 of HM(t), to say

HM(t) = gM(t)(1 − t)−GKdim(M), for some gM(t) ∈ Z[t, t−1].
Another useful invariant of the module M ∈ A − gr is given below.

Definition II.24. The multiplicity of M is defined to be

mult(M) ∶= gM(1) = [(1 − t)GKdim(M)HM(t)]�t=1 ∈ N.
Example II.25. We have that the d-linear modules (Definition II.19) are examples

of modules with multiplicity 1 and GK-dimension d + 1.
Likewise we can define Gelfand-Kirillov dimension for a graded algebra A by

GKdim(A) = GKdim(AA). In other words, we have:

Definition II.26. Let A be a finitely generated N-graded connected k-algebra. Then

the Gelfand-Kirillov dimension of the algebra A is

GKdim(A) = lim inf{↵ � ∃c ≥ 0 so that dimk(A≤n) ≤ cn↵ for all n >> 0}.
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For example, the GK-dimension of the commutative polynomial ring k[x
1

, . . . , xn]
is n, whereas the GK-dimension of the free algebra k{x

1

, . . . , xr} is ∞ for r ≥ 2. We

also consider the following properties presented in the next two propositions.

Proposition II.27. [MR01, 8.1.17, 8.1.18, 8.2.7] [KL00, Chapter 7] [Sta] Let A be

a finitely generated, locally finite, N-graded, k-algebra. Take M ∈ A-mod. We have

that the following facts hold.

1. If A is commutative, then GKdim(A) equals the degree of the Hilbert-Samuel

polynomial.

2. If A is not commutative, then GKdim(A) need not be an integer.

3. GKdim(M) = 0 if and only if M is finite-dimensional.

4. If GKdim(M)< 1, then GKdim(M)=0.

5. If A is also a connected graded domain, then

GKdim(A) = 1 + lim inf{� � ∃c ≥ 0 so that dimk(An) ≤ cn� for all n >> 0}.
6. GKdim(A[t]) = GKdim(A) + 1

Proposition II.28. [KL00, Proposition 3.15] Let I be an ideal of a k-algebra A and

assume that I contains a (left or right) regular element of A. Then

GKdim(A�I) ≤ GKdim(A) − 1.
Note that GKdim(A)< ∞ if and only if A has polynomial bounded growth. We

now introduce terms pertaining to the case that GKdim(A)=∞.

Definition II.29. [SZ97] Let A be a graded locally finite k-algebra. We say that A

has sub-exponential growth if limd fA(d)1�d ≤ 1, and has exponential growth

if limd fA(d)1�d > 1.
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So if A has polynomial growth, then it has sub-exponential growth. However the

converse does not hold.

These notions of growth slightly di↵er from the standard definitions (say as pre-

sented in [KL00]), yet the advantage of the [SZ97] version is that it is used to study

the ring-theoretic behavior of A. Namely we have the following result of Stephenson

and Zhang, which we use throughout this thesis.

Theorem II.30. [SZ97, Theorem 0.1] If A is a graded locally finite left noetherian

k-algebra, then A has sub-exponential growth.

2.3 Representation theory via noncommutative projective algebraic ge-
ometry

In this section, we provide the background information for the study of the rep-

resentation theory of certain noncommutative algebras U that are not necessarily

graded. We are particularly interested in classifying simple finite-dimensional U -

modules, a set denoted by Simp<∞U . We refer to the set of finite-dimensional

U -modules by Repr<∞U . The idea is to interpret U as analogous to the coordinate

ring of an a�ne open subset of a projective scheme Proj(A). Classifying Simp<∞A
is also of interest.

Recall from Definition II.22 the notion of a critical module. We now present an

association between irreducible finite-dimensional representations of A and 1-critical

A-modules. We also require the following terminology.

Definition II.31. Let A =�
i∈N Ai be a connected graded k-algebra. The ideal

A+ ∶=�
i≥1 Ai is referred to as the irrelevant ideal (or as the augmentation ideal).

Moreover the module A�A+ ≅ Ak is called the trivial module.
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Lemma II.32. [SS93, Lemma 4.1] Let A be a connected graded k-algebra gener-

ated in degree one that is noetherian and locally finite (dimkAi < ∞). Assume that

GKdim(A) ≥ 1. Now if M is a nontrivial finite-dimensional simple A-module, then

M is a quotient of some 1-critical graded A-module.

Proof. We repeat the proof presented in [SS93]. Let M be a nontrivial simple finite-

dimensional left S-module. Define a new left S-module: M̃ ∶= M ⊗k k[t], with

s ∈ Sd acting by s ∗ (m ⊗ ti) = (sm) ⊗ ti+d. Then M̃ is a graded S-module with

M̃d = M ⊗ (k ⋅ td). By considering the map ⇡ ∶ M̃ → M given by ⇡(m ⊗ td) = m,

we see that M is isomorphic to the factor M̃�M̃(t − 1). Hence M is the quotient of

a graded module M̃ , a module which has GK-dimension 1 (Proposition II.27) and

multiplicity equal to dimkM .

Since there is a filtration

M̃ = M̃0 ⊇ M̃1 ⊇ M̃2 ⊇ � ⊇ M̃k = 0
by graded submodules so that M̃ i�M̃ i+1 is critical, we have that M is a quotient of

one of these factors. Thus M is the quotient of a 1-critical graded A-module.

Remark II.33. [SS93, Remarks after Lemma 4.1] Say a nontrivial module M in

Simp<∞S is the quotient of some 1-critical graded module N . In other words, there

is an A-module map  ∶ N →M . Then there exists a unique degree 0 A-module map

 ̃ ∶ N → M̃ such that  = ⇡ ○  ̃. This map  ̃ is given by  ̃(n) =  (n)⊗ td for n ∈ Nd.

Now N[k] embeds into M̃ for some k ∈ Z, and mult(N) ≤mult(M̃) = dimkM.

The rest of section is dedicated to understanding 1-critical graded A-modules,

which is used for the study of Simp<∞A[c−1]0 for some central element c of A. Here

A[c−1]
0

is the algebra U mentioned at the beginning of this section. Moreover we will
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see that the class of 1-critical graded A-modules is associated to the set of irreducible

objects of the category A-qgr.

Notation. We denote by Irred(A-qgr), the subcategory of A-qgr whose objects consist

of irreducible objects of A-qgr.

2.3.1 Commutative motivation

To motivate 2.3.2, we illustrate the geometry of 1-critical graded R-modules for

R a commutative connected graded ring generated in degree one. Of course if R is

commutative, then the finite-dimensional representations of R are 1-dimensional, so

this setting is rather di↵erent from the noncommutative notions discussed later.

Lemma II.34. Let R be a commutative graded k-algebra, generated in degree one

over R
0

= k. We have an equivalence of categories whose objects are respectively:

(a) 1-critical graded R-modules;

(b) irreducible objects of R-qgr;

(c) R-point modules.

Proof. We remind the reader that the field k is algebraically closed. The equivalence

of categories (a) and (c) is discussed in [Smi94, 6], whereas the equivalence between

categories (b) and (c) can be understood geometrically via Serre’s theorem (Theorem

II.1). Namely Irred(R-qgr) ∼ Irred(coh(X)), where the latter corresponds to closed

points of X=Proj(R).

Thus by Lemma II.32 when R is commutative, all simple finite-dimensional R-

modules arise as simple quotients of point modules.

However when given a noncommutative algebra A, the category A-qgr is gener-

ally not equivalent to coh(X) for some projective scheme X. Thus it is useful to
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consider factors of A for which this scenario occurs. We depict such a scenario for

the commutative setting as follows.

Let f be a regular element of R, homogeneous of positive degree. Consider the

decomposition of the projective scheme Proj(R) =:X into a union of a closed sub-

scheme Proj(R�(f)) and its open complement Xf . We aim to investigate this union

categorically. First consider V(f) = Proj(R�(f)), a closed subscheme of X. We have

by Theorem II.1 an equivalence of categories:

(2.3) coh(V(f)) ∼ Irred(R�(f) − qgr) ∼ Irred(R-qgr)
f -torsion

.

In other words, the closed subscheme V(f) of X is thought of categorically as the

subcategory Irred(R-qgr)
f -torsion

of Irred(R-qgr).

On the other hand, consider the complement Xf of V(f) in X:

Xf = {p ∈X � f(p) ≠ 0},
or rather the a�ne scheme Spec(R[f−1]

0

). Instead of considering coherent sheaves

on Xf , we use the equivalence of ‘complementary’ categories below:

(2.4) Irred(R-qgr)
f -torsionfree

∼ Simp<∞R[f−1]0.
This equivalence is induced by the localization map: R-qgr �→ R[f−1]

0

-mod, given

by [M] � M[f−1]
0

[ATVdB91, 7]. Hence the open complement Xf of V(f) in X

is viewed categorically as the category Irred(R-qgr)
f -torsionfree

.

We summarize the decompositions discussed above in the following figure. The

last diagram, in particular, references the equivalences in (2.3) and (2.4), and Lemmas

II.32 and II.34.
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V(f) = Proj(R�(f)) coh(V(f)) Irred(R�(f)-qgr)
X

f

= Spec(R[f−1]0) ‘coh(X �V(f))’ Simp<∞R[f−1]0

Figure 2.8: (Category equivalences of) the decomposition of R-qgr

2.3.2 Decomposing noncommutative projective schemes (or categories -qgr)

Consider Figure 2.8 with R = A, an arbitrary noncommutative connected graded

algebra generated in degree 1. Recall that our goal is not only understand the

class of finite-dimensional simple A-modules Simp∞A, but to also classify Simp<∞U
for some ungraded algebra U prompted by the a�ne geometry of Proj(A). From

the discussion of 2.1.2, we know that it is undesirable to use Proj(A), so instead

we generalize the relationship between the last two diagrams of Figure 2.8 to the

noncommutative setting. In particular, we employ a noncommutative version of

Serre’s Theorem (Theorem II.14).

Considering the quotient functor ⇡ ∶ A-gr → A-qgr, we now study the representa-

tives F ∈ A-gr of irreducible objects in A-qgr.

Proposition II.35. [Smi94, Proposition 7.1] Every irreducible object in A-qgr has

a representative F ∈ A-gr so that:

1. F =�
i≥0 Fi;
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2. F is generated by F
0

;

3. dimk Fi is constant for all i, and this constant is equal to mult(F );

4. F has no nonzero finite dimensional submodule.

Hence this prompts the following terminology for the graded A-modules with

images in Irred(A-qgr).

Definition II.36. A cyclic graded left A-module M , generated in degree 0, of GK-

dimension 1 and multiplicity ✏ is called a point module if ✏ = 1, and a fat point

module if ✏ > 1.
We now use point modules and fat point modules of A to yield results about

Simp<∞(A). To achieve a decomposition similar to Figure 2.8, first take a central

regular element c of A, homogeneous of positive degree. If we are given a module

M ∈ A-qgr that is c-torsion, then M ∈ A�(c)-qgr. Otherwise by [ATVdB91, Proposi-

tion 7.5], we have that M yields an object in Repr<∞A[c−1]0. Hence an irreducible

object of A-qgr is either an irreducible object of the category A�(c)-qgr or it corre-
sponds to a finite-dimensional simple module over the ungraded algebra A[c−1]

0

.

A nice scenario occurs when (in addition to the hypotheses on A and c above)

the factor A�(c) is isomorphic to a twisted homogeneous coordinate ring B(PA,L,�),
where PA is the point scheme of A, and L is a �-ample invertible sheaf of PA. Morally

we say that the noncommutative projective scheme (A-qgr, ⇡(AA), sA) (Definition
II.21) decomposes into the “closed subscheme” (B-qgr, ⇡(BB), sB), and its open

complement corresponding to objects of Simp<∞A[c−1]0. Such a notion is the non-

commutative analogue of the third diagram of Figure 2.8.

In fact we understand the category, Irred(B-qgr), by Noncommutative Serre’s

theorem (Theorem II.14); the irreducible objects of B-qgr correspond to B-point
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modules. Hence by the comments after Definition II.36, finite-dimensional simple

modules over A[c−1]
0

correspond to fat point modules over A. In other words, classi-

fying fat point modules of A produces results about the representation theory of the

(ungraded) algebra A[c−1]
0

. We will see later that this can be achieved by study-

ing the representation theory of the graded algebras A and A�(c), techniques which
are particularly useful in Chapter 4 where we study deformed Sklyanin algebras (see

Example 3 in 2.3.3).

2.3.3 Examples

We provide examples of the discussion in the previous subsection. Namely we

illustrate the decomposition of a noncommutative scheme (A-qgr, ⇡(AA), sA) into a

closed subscheme and open complement, and to yield results in representation theory.

(1) Let A be the homogenized Weyl algebra,

k{x, y,w}�(xy − yx −w2, xw −wx, yw −wy),
and let c = w. Let k is an algebraically closed field of characteristic zero. Then

A�(w) = k[x, y], a commutative polynomial ring. Moreover A[w−1]
0

is isomorphic

to the first Weyl algebra W = k{x, y}�(xy − yx − 1). Since the Weyl algebra has

no irreducible finite-dimensional representations, then all (nontrivial) simple finite-

dimensional A-modules arise as simple quotients of 1-critical modules (or point mod-

ules in this case) over k[x, y]. These can be explicitly computed.

(2) Let A be Skly
3

(a, b, c) with abc ≠ 0 and (a3 + b3 + c3)3 ≠ (3abc)3, and let c = g
be the degree 3 central element from Remark II.17. Then S�(g) is isomorphic to

a twisted homogeneous coordinate ring B(E,L,�) for E an elliptic curve. More-

over S[g−1]
0

is a simple ring if ��� = ∞, and Azumaya (Definition II.46) if ��� < ∞
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[ATVdB91, Proposition 7.3]. Thus one can apply results such as Theorem II.51 to

understand simple finite-dimensional modules over S[g−1]
0

. Further work about the

sets Simp<∞S, Simp<∞B, and Simp<∞S[g−1]0 is presented in 4.3.

(3) In Chapter 4 we will define a large class of deformed Sklyanin algebra, Sdef , for

which this discussion of 2.3.2 is particularly useful. The algebras have the following

properties. Let A = D, a central extension of Skly
3

(Definition IV.6), and let c = w.
Then A�(w) = Skly

3

and A[w−1]
0

= Sdef (Definition IV.2).

2.4 Polynomial identity (PI) rings

Polynomial identity (PI) rings have been of interest to algebraists and geometers

since the 1920s; refer to [Ami74] for a historical account of these structures. This

section will review basic definitions, properties, and examples of PI rings as presented

in [MR01, Chapter 13]. Special subclasses of PI rings are also discussed in 2.4.2-

2.4.3.

2.4.1 Basic properties of PI rings

Definition II.37. A polynomial identity (PI) ring is a ring A for which there

exists a monic multilinear polynomial f ∈ Z{x
1

, . . . , xn} so that f(a
1

, . . . , an) = 0 for

all ai ∈ A. The minimal degree of such a polynomial is referred as the minimal

degree of A.

Proposition II.38. (1) Any ring that is module-finite over its center is PI.

(2) Any subring or homomorphic image of a PI ring is PI.

Examples II.39. (1) Commutative rings R are PI as the elements satisfy the poly-

nomial identity f(x, y) = xy − yx for all x, y ∈ R.

(2) The ring of n × n matrices over a commutative ring R, Matn(R), is PI.
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(3) The ring A = k{x, y}�(xy + yx) is PI as A is a rank 4 module over its center

Z(A) = k[x2, y2].
In fact if A is PI, then Matn(A) is also PI for all n ≥ 1.

2.4.2 On central simple algebras (CSAs)

Now we study a nice subset of PI rings: central simple algebras (CSAs); details

can be found in [MR01, 13.3].

Definition II.40. A ring is a central simple algebra (CSA) if its simple, artinian,

and a finite-dimensional module over its center. Hence by Wedderburn’s theorem,

A ≅ Matn(D) for some division ring D, where D is module-finite over its center.

↵
⌦

�
 PI rings

⌥⌃ ⌅⇧CSAs

Figure 2.9: The class of PI rings contains the subclass of CSAs

Provided a CSA, we can explicitly measure the ring’s noncommutativity. This

prompts the notion of the PI degree.

Lemma II.41. [MR01, Corollary 13.3.5] Let A =Matn(D) be a CSA with Z(D) = C.

Then dimC D =m2 and dimC A = (mn)2 =∶ p2 for some m,n ∈ N.
Considering the theorem above, we have that 2p is the minimal degree of A. The

value p is called the PI degree of a CSA A. Moreover, the value p2 is the rank of

A over its center.

The notion of PI degree can be extended to the class of prime PI rings via Posner’s

theorem. This is discussed in [MR01, 13.6.5] and we restate their remarks here.
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Theorem II.42. (Posner) Let A be a prime PI ring with center Z and with minimal

degree 2p. Let S = Z � {0}, let Q = AS−1, and let F = ZS−1 denote the quotient field

of Z. Then Q is a CSA with center F and dimF Q = p2.
Considering the notation above, the PI degree of a prime PI ring A is equal

to (dimF Q)1�2, where Q is the Goldie quotient ring of A.

Examples II.43. (1) Let R be a commutative ring. Then R has minimal degree 2,

has PI degree 1, and is rank 1 over its center.

(2) Let R be a commutative ring. Then Matn(R) has minimal degree 2n, has PI

degree n, and is rank n2 over its center.

(3) The ring A = k{x, y}�(xy + yx) has minimal degree 4, has PI degree 2, and is

rank 4 over its center.

Now provided that an extra condition holds, a PI ring is in fact a CSA.

Definition II.44. A ring A is said to be (left) primitive if A has a faithful simple

module M . In other words, M is simple with the condition that aM = 0 only if a = 0
for any a ∈ A.
Theorem II.45. [MR01, Theorem 13.3.8] (Kaplansky) If A is a primitive PI ring

of minimal degree d, then A is a CSA of rank (d�2)2 over its center.

2.4.3 On Azumaya algebras

We introduce Azumaya algebras, an extension of the class of central simple alge-

bras (CSAs) which is a well behaved subclass of PI rings. A further discussion of

these rings is found in [MR01, 13.7].

Definition II.46. Let A be a ring with center C, and let E ∶= EndAC . Then A is

Azumaya over C if
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(i) AC is finitely generated and projective, and

(ii) A⊗C Aop �→ E is an isomorphism.

Note that the definition above is rarely used in practice. Instead we may want to

think of an Azumaya algebra as a CSA over C, where C is a commutative ring that

is not necessarily a field. Here are some basic properties.

Proposition II.47. (1) If A is Azumaya, then A is PI.

(2) If A is a CSA, then A is Azumaya.

(3) If R is a commutative ring, then Matn(R) is Azumaya.

✏
�

�
�PI rings

↵
⌦

�
 Azumaya algebras

⌥⌃ ⌅⇧CSAs

Figure 2.10: The class of PI rings contains Azumaya algebras, which in turn contains CSAs

Again these rings are closely tied to their centers.

Proposition II.48. [MR01, Proposition 13.7.9] Say A is Azumaya with center

Z(A). Then there is a 1-1 correspondence between the set of ideals of A and the

set of ideals of Z(A). This is given by the maps: I � I ∩ Z(A) and HA � H,

respectively.

The above result is useful from the standpoint of noncommutative geometry, as in

this setting: Spec(A) = Spec(Z(A)).
Corollary II.49. If A is Azumaya, then the following are equivalent:

(i) A has the a.c.c. on ideals;

(ii) A is right and left Noetherian; and
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(iii) Z(A) is Noetherian.
We end with a couple of structure theorems on (the representations of) prime

Azumaya algebras.

Theorem II.50. [MR01, Theorem 13.7.14] (Artin-Procesi) Let A be a prime ring.

Then the following are equivalent

(i) A is Azumaya of rank n2;

(ii) A is a prime PI ring so that for all primes p: PIdeg(A�p) = PIdeg(A), with

PIdeg(A) = n.

Pertaining to Chapter 4 in particular, it is worth pointing out that prime Azumaya

algebras are nice in terms of representation theory due to the following result of Artin.

Theorem II.51. [Art69] Let A be a prime Azumaya algebra. Then the dimension

of a simple finite-dimensional A-module is equal to the PI degree of A.

We can apply this discussion to arbitrary PI algebras provided we restrict our

attention to the Azumaya locus as we define below.

Proposition II.52. [BG97, Proposition 3.1] Let A be a prime noetherian ring that

is module finite over its center Z. Assume that Z is an a�ne algebra over an

algebraically closed field k. Then the following statements hold.

(a) The maximum k-vector space dimension of simple finite-dimensional A-modules

is the PI degree of A.

(b) Let M be a simple A-module, let P denote annAM , and let m = P ∩ Z. Then

dimkM = PIdeg A if and only if Am is an Azumaya over Zm. Here Am is the

localization A⊗Z Zm.

The condition in part (b) prompts the following definition.
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Definition II.53. Assume that the hypotheses of Proposition II.52 hold. Consider

the sets: AA = {m ∈maxspecZ � Am is Azumaya over Zm},
SA = {m ∈maxspecZ � gldim(Zm) =∞}.

These are called the Azumaya locus and singular locus of A respectively. The

ideals in the Azumaya locus are referred to as Azumaya points. Moreover the

complement of SA in maxspecZ is referred to as the smooth locus.

Thus when A is Azumaya, we have that AA =maxspecZ and we recover the result

of Theorem II.51. More generally if the hypotheses of Proposition II.52 hold, then

we get that:

Proposition II.54. [BG02, III.1] AA is an open, Zariski dense subset of maxspecZ.

Moreover we have that AA and SA are related in the following manner.

Lemma II.55. [BG97, Lemma 3.3] Assume the hypotheses of Proposition II.52. If

gldim(A) <∞, then AA ⊆ maxspecZ � SA.
Equality can actually be achieved, to say the Azumaya and smooth loci of A can

coincide, provided additional conditions on A hold [BG97, Theorem 3.8].

Therefore we see that the representation theory of noncommutative PI k-algebras

can be analyzed geometrically.

2.5 Bergman’s Diamond Lemma

This section is dedicated to results of Bergman, which construct a k-vector space

basis for a given k-algebra A. The details for the following work is found in [Ber78],

and the presentation of this material is borrowed from [Sta].

Notation. Given a k-algebra A = T (V )�I where V is a finite-dimensional k-vector

space, pick an ordered basis x
1

< x
2

< ⋅ ⋅ ⋅ < xn for V . We form a basis of T (V ) by
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considering the set of all monomials in {xi} under the lexicographical ordering on

< V >. Let I be generated as an ideal by {si} where (after nonzero scalar multipli-

cation) si = wi − fi, so that wi is a monic monomial > fi.
We introduce a way of simplifying elements of A by using the following maps.

Definition II.56. Given monomials m,n ∈< V >, we have maps:

� ∶< V >�→ T (V ), given by mwin� mfin.

This extends by linearity to: T (V ) �→ T (V ); products of these maps are called

reductions.

Definition-Lemma II.57. For all t ∈ T (V ), we have that t is reduction finite in

the sense that for reductions �i, we have that: �s��1(t) = �s+1�s��1(t), ∀s >> 0.
Now considering reductions, we define the following terms of T (V ).

Definition II.58. (a) We say that t ∈ T (V ) is irreducible if �(t) = t for all reduc-
tions �. Let T (V )irred denote the set of irreducible elements of T (V ). This is clearly
spanned by < V >irred.
(b) We say t ∈ T (V ) is reduction unique if for all sequences of reductions from t to

an irreducible element, then we get the same element. In this case, write this unique

element as �∞(t).
Example II.59. Consider the k-algebra A = k{x, y}�(yx − xy − x2).
(a) Take y > x so w = yx and f = xy + x2. Then we see that the set of irreducible

monomials of A are of the form {xiyj}i,j∈N.
(b) Take x > y so w = x2 and f = xy − yx. The element x3 is not reduction unique

due to the following computations:
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x3 = x2 ⋅ x = (xy − yx)x = xyx − y(x2)
= xyx − y(xy − yx) = xyx − yxy + y2x

and

x3 = x ⋅ x2 = x(xy − yx) = (x2)y − xyx
= (xy − yx)y − xyx = xy2 − yxy − xyx.

Therefore 2xyx+y2x−xy2 = 0 is a hidden relation. Continue by including this hidden

relation in the ideal of relations I of A and repeat reductions for the other monomials

that are potentially not reduction unique. For a given degree, this process eventually

terminates and we get a basis of irreducible monomials of the form

{x✏ ⋅ yi1 ⋅ x ⋅ yi2 ⋅ x ⋅ yi3�}
for ij ∈ N, ✏ = 0,1.

We now examine conditions where reduction uniqueness fails.

Definition II.60. (a) Say that there exist monomials m,n,p ∈ V so that mn = w
1

and

np = w
2

for some relations s
1

= w
1

− f
1

and s
2

= w
2

− f
2

. This is called an overlap

ambiguity. It is resolvable (we are able to find �∞) provided that f
1

p and mf
2

are

reduction unique with �∞(f1p) = �∞(mf2).
(b) Say that there exist monomials m,n,p ∈ V so that mnp = w

1

and n = w
2

for some

relations s
1

= w
1

− f
1

and s
2

= w
2

− f
2

. This is called an inclusion ambiguity. It is

resolvable provided that �∞(f1) = �∞(mf2p).
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Figure 2.11: Resolution of ambiguities

The following theorem provides us with the precise conditions for which we can

write down an irreducible basis of monomials for the algebra A = T (V )�I. If A is

graded, then the theorem yields an algorithm for computing such a basis.

Theorem II.61. [Ber78, Theorem 1.2] (Bergman’s Diamond Lemma)

The following are equivalent:

(1) A = T (V )�I has a k-vector space basis of monomials < V >irred,
(2) All elements of T (V ) are reduction unique,

(3) All ambiguities of A are resolvable.
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Below are two examples of Diamond Lemma computations that are required in

Chapter 3.

Example II.62. Consider the algebra S = S(1, b, c) in Lemma III.8. Namely we

have that b3 = c3 = 1 and

S = k{x, y, z}� �yz + bzy + cx2, zx + bxz + cy2, xy + byx + cz2� .
Take the ordering x < y < z. We first show that all ambiguities of S are resolvable.

Secondly we compute a basis of irreducible monomials of S. Observe that b−1 = b2
and c−1 = c2. Now rewrite the relations of S as follows:

z2 = −bc2yx − c2xy,
zy = −b2yz − b2cx2,

zx = −bxz − cy2.
There are three (overlap) ambiguities that we must resolve:

z3 = z2 ⋅ z = z ⋅ z2,
z2y = z2 ⋅ y = z ⋅ zy,
z2x = z2 ⋅ x = z ⋅ zx.

Here are the computations for the first ambiguity:

z2 ⋅ z = (−bc2yx − c2xy) ⋅ z = −bc2yxz − c2xyz
and

z ⋅ z2 = z ⋅ (−bc2yx − c2xy) = −bc2(zy)x − c2(zx)y
= c2y(zx) + x3 + bc2x(zy) + y3
= −bc2yxz − y3 + x3 − c2xyz − x3 + y3
= −bc2yxz − c2xyz.

Hence the ambiguity z3 is resolvable.
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Likewise z2 ⋅ y = −bc2yxy − c2xy2 and

z ⋅ zy = z ⋅ (−b2yz − b2cx2) = −b2(zy)z − b2c(zx)x
= by(z2) + bcx2z + cx(zx) + b2c2y2x
= −b2c2y2x − bc2yxy + bcx2z − bcx2z − c2xy2 + b2c2y2x
= −bc2yxy − c2xy2.

Thus z2y is resolvable. Similarly, we have that z2 ⋅ x = z ⋅ zx = −bc2yx2 − c2xyx.
Now by Theorem II.61, we can then conclude that S has a k-vector space of

monomials < V >irred. Moreover we have that < V >irred equals the set of monomials

in k{x, y}⊕ k{x, y} ⋅ z.
Example II.63. Given the dual S! of S in Example II.62, we show that all ambi-

guities are resolvable. Here S! = k{u, v,w}�(R) where R is the set of relations:

{w2 = cuv, wv = b2vw, wu = buw, vw = c2u2, v2 = bcuw, vu = b2uv}.
Take the ordering u < v < w, and recall that b3 = c3 = 1. There are twelve (overlap)

ambiguities, which by the following calculations are resolvable:

w3 = w2 ⋅w = w ⋅w2 = cu3,

w2v = w2 ⋅ v = w ⋅wv = bc2u2w,

w2u = w2 ⋅ u = w ⋅wu = b2cu2v,

wvw = wv ⋅w = w ⋅ vw = b2c2u2w,

wv2 = wv ⋅ v = w ⋅ v2 = b2c2u2v,

wvu = wv ⋅ u = w ⋅ vu = b2c2u3,

vw2 = vw ⋅w = v ⋅w2 = c2u2w,

vwv = vw ⋅ v = v ⋅wv = c2u2v,

vwu = vw ⋅ u = v ⋅wu = c2u3,

v2w = v2 ⋅w = v ⋅ vw = bc2u2v,

v3 = v2 ⋅ v = v ⋅ v2 = u3,

v2u = v2 ⋅ u = v ⋅ vu = b2cu2w.

By Theorem II.61, S! has < V >irred as a k-vector space basis of monomials, and

this is precisely the set of the monomials in k[u]⊕ k[u] ⋅ v ⊕ k[u] ⋅w.



CHAPTER III

Degenerate Sklyanin algebras and generalized twisted
homogeneous coordinate rings

A vital development in the field of noncommutative projective algebraic geom-

etry is the investigation of connected graded noncommutative rings A with use of

geometric data. In particular Artin-Tate-van den Bergh constructed twisted homo-

geneous coordinate rings B (Definition II.9), whose role is analogous to section rings

in classical algebraic geometry. Often B is a well behaved ring and the algebra A

will share its properties.

For example consider A = Skly
3

, the three-dimensional Sklyanin algebra for which

we recall the definition for the reader’s convenience.

Definition III.1. The three-dimensional Sklyanin algebras, denoted by

S(a, b, c) or Skly
3

, are generated by three noncommuting variables x, y,z, subject to

three relations:

(3.1)

ayz + bzy + cx2 = 0
azx + bxz + cy2 = 0
axy + byx + cz2 = 0

for [a ∶ b ∶ c] ∈ P2

k �D where

D = {[0 ∶ 0 ∶ 1], [0 ∶ 1 ∶ 0], [1 ∶ 0 ∶ 0]} ∪ {[a ∶ b ∶ c] � a3 = b3 = c3 = 1}.
53
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The geometric data associated to Skly
3

is E = a cubic curve or P2 (Proposition

II.15), from which we can build a twisted homogeneous coordinate ring B(E). More-

over there exists a ring surjection from Skly
3

onto B(E) with kernel generated by a

regular, central element, homogeneous of degree 3 (Theorem II.16) in the case that

E is smooth. Furthermore in this case, the behavior of Skly
3

reflects that of B

ring-theoretically (Corollary II.18).

During the last few years, a number of examples of (even noetherian) algebras

have appeared for which the techniques of Artin-Tate-van den Bergh are inapplica-

ble. This is because the point modules for these algebras cannot by parameterized

by a projective scheme of finite type (see for example [KRS05]). Consequently one

cannot form a corresponding twisted homogeneous coordinate ring. In this chapter,

we explore a recipe suggested in [ATVdB90, 3] for building a generalized twisted

homogeneous coordinate ring for any connected graded ring. Note that such re-

sults appear in [Wal09]. In particular, we provide a geometric approach to examine

degenerations of Sklyanin algebras.

Definition III.2. The rings S(a, b, c) from Definition III.1 with [a ∶ b ∶ c] ∈ D are

called degenerate Sklyanin algebras, denoted by Sdeg.

We will see that the geometry of Sdeg involves a degenerate cubic curve. On the

other hand we establish algebraic properties of Sdeg such as growth, dimensions, and

other ring-theoretic characteristics in 3.1. These are listed in Theorem I.6.

Motivated by the methods of [ATVdB90], we make use of point modules over Sdeg

to construct the generalized coordinate ring. To do so, we first generate geometric

data for Sdeg in 3.2. We remind the reader of the definitions of (truncated) point

modules in Definitions II.3 and II.2.
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Theorem III.3. (Proposition III.26) For d ≥ 2, the truncated point schemes Vd ⊂
(P2)×d corresponding to Sdeg are isomorphic to either:

(i) a union of three copies of (P1)× d−1
2 and three copies of (P1)× d+1

2 , if d is odd, or;

(ii) a union of six copies of (P1)× d

2 , if d is even.

Observe that the point scheme of a degenerate Sklyanin algebra does not stabilize

to produce a projective scheme of finite type. Hence we cannot mimic the approach

of [ATVdB90] to construct a twisted homogeneous coordinate ring associated to

Sdeg. Instead we form a graded ring dependent on the truncated point schemes Vd of

Sdeg. Such a ring is called a point parameter ring P (Sdeg) (Definition III.29), which

have not appeared in the literature since their introduction in [ATVdB91]. The next

results of 5.3 describe the behavior of the first non-trivial examples of these rings.

Theorem III.4. (Proposition III.31, Theorem III.36, Corollaries III.40 and III.41)

The point parameter ring P = P (Sdeg) is generated in degree one. Since

(Sdeg)1 ≅ (P (Sdeg))1, we have that P is a factor of the corresponding Sdeg. It has

Hilbert series HP (t) = (1+ t2)(1+2t)[(1−2t2)(1− t)]−1. Moreover P has exponential

growth and is neither right noetherian, Koszul, nor a domain.

Thus Theorem III.4 yields a result surprisingly similar to Theorem II.16 (pertain-

ing to Skly
3

� B(E)), despite the fact that the rings Skly
3

and Sdeg are entirely

di↵erent as we will see in 3.1.

Moreover with the results of 3.1, we see that the behavior of P (Sdeg) resembles

that of Sdeg and it is natural to ask if other noncommutative algebras can be analyzed

in a similar fashion. Some further directions are discussed in 3.4; those particularly

pertaining to the field of coherent noncommutative algebraic geometry are mentioned

in 3.5.
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3.1 Structure of degenerate Sklyanin algebras

In this section, we establish algebraic properties of degenerate Sklyanin algebras.

We begin by considering the degenerate Sklyanin algebras S(a, b, c)deg with a3 = b3 =
c3 = 1 (Definition III.2) and the following definitions from [GW04].

Definition III.5. Let ↵ be an endomorphism of a ring R. An ↵-derivation on R

is any additive map � ∶ R → R so that �(rs) = ↵(r)�(s) + �(r)s for all r, s ∈ R. The

set of ↵-derivations of R is denoted ↵-Der(R).

We write S = R[z;↵, �] provided S is isomorphic to the polynomial ring R[z] as a
left R-module but with multiplication given by zr = ↵(r)z + �(r) for all r ∈ R. Such

a ring S is called an Ore extension of R. More precisely:

Definition III.6. Let R be a ring, ↵ a ring endomorphism of R, and � an ↵-

derivation on R. We shall write S = R[z;↵, �] provided
(a) S is a ring, containing R as a subring;

(b) z is an element of S;

(c) S is a free left R-module with basis {1, z, z2, . . .};
(d) zr = ↵(r)z + �(r) for all r ∈ R.

Such a ring S is called an Ore extension of R.

By generalizing the work of [BS] we see that most degenerate Sklyanin algebras

are factors of Ore extensions of the free algebra on two variables. Note that if a ≠ 1,
then S(a, b, c) is isomorphic to S �1, b

a ,
c
a
�. Hence whenever we consider such an S,

we assume that a = 1.
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Proposition III.7. Let a, b, c ∈ k so that a = 1 and b3 = c3 = 1, thus [a ∶ b ∶ c] ∈ D.

Then we get the ring isomorphism

(3.2) S(1, b, c) ≅ k{x, y}[z;↵, �](⌦)
where

(a) ↵ ∈End(k{x, y}) is defined by ↵(x) = −bx, ↵(y) = −b2y,
(b) � ∈ ↵-Der(k{x, y}) is given by �(x) = −cy2, �(y) = −b2cx2,

(c) ⌦ = xy + byx + cz2, which is a normal element of k{x, y}[z,↵, �].
Proof. By direct computation ↵ and � are indeed an endomorphism and ↵-derivation

of k{x, y} respectively. Moreover x ⋅⌦ = ⌦ ⋅bx, y ⋅⌦ = ⌦ ⋅by, z ⋅⌦ = ⌦ ⋅z so ⌦ is a normal

element of the Ore extension. Thus both rings of (3.2) have the same generators and

relations.

Lemma III.8. The Hilbert series of Sdeg is HS
deg

(t) = (1 + t)(1 − 2t)−1.
Proof. One can find a basis of irreducible monomials via Bergman’s Diamond lemma

(Theorem II.61) to imply that dimk Sd = 2d−13 for d ≥ 1. For S(1, b, c), we have

shown in Example II.62 that S is free with a basis {1, z} as a left or right module

over k{x, y}.
Now consider the monomial algebra S(1,0,0) = k{x, y, z}�(yz, zx, xy). An irre-

ducible word of S is precisely constructed by following the variable x with either x

or z, by following the variable y with either x or y, and by following the variable z

with either y or z. Here again dimk Sd = 2d−13 for d ≥ 1. Similar results hold for the

other two degenerate Sklyanin algebras that are monomial algebras.

Therefore in each case the algebra Sdeg has Hilbert series,

HS
deg

(t) = 1 +�
d≥12d−13 ⋅ td = 1 + 3t�

d≥0(2t)d = 1 + 3t

1 − 2t = 1 + t
1 − 2t .
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Therefore by Proposition III.7 (for a3 = b3 = c3 = 1) or Lemma III.8 (in general) we

have the following consequence. Recall the notions of growth introduced in Chapter

2, section 2.

Corollary III.9. The degenerate Sklyanin algebras have exponential growth, infinite

GK dimension, and are not left noetherian. Furthermore Sdeg is not a domain.

Proof. For all values [a ∶ b ∶ c] ∈D, we have by Lemma III.8 that

rd ∶=�
i≤d dimk Si = �

i≤d 2i−13 = 3(2d+1 − 1).
Since limd r

1�d
d = 2 > 1, the algebras Sdeg have exponential growth. Thus GKdim(Sdeg)=

∞ and so by Theorem II.30, Sdeg is also not noetherian.

Now if [a ∶ b ∶ c] ∈ {[1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0], [0 ∶ 0 ∶ 1]}, then the monomial

algebra S(a, b, c) is obviously not a domain. On the other hand if [a ∶ b ∶ c] satisfies
a3 = b3 = c3 = 1, then assume without loss of generality that a = 1. As a result we

have

f
1

+ bf
2

+ cf
3

= (x + by + bc2z)(cx + cy + b2z),
where f

1

= yz + bzy + cx2, f
2

= zx+ bxz + cy2, and f
3

= xy + byx+ cz2 are the relations
of S(1, b, c). Hence S is not a domain.

Now we verify homological properties of degenerate Sklyanin algebras.

Definition III.10. Let A be a connected graded algebra which is locally finite

(dimkAi <∞). We say that A isKoszul if its trivial module A��i≥1Ai ≅ Ak admits a

minimal resolution Pmin● that is linear. In other words, the entries of the matrices that

determine Pmin● belong to A
1

. Refer to [Kra, 4] for a discussion of basic properties

and examples of such algebras.
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Proposition III.11. The degenerate Sklyanin algebras are Koszul with infinite global

dimension.

Proof. For S = S(a, b, c) with a3 = b3 = c3 = 1, assume that a = 1 and consider the

description of S in Proposition III.7. Since k{x, y} is Koszul, the Ore extension

k{x, y}[z,↵, �] is also Koszul [CS08, Definition 1.1, Theorem 10.2]. By Proposition

III.7, the element ⌦ is normal and regular in k{x, y}[z;↵, �]. Hence the factor S is

Koszul by [ST01, Theorem 1.2].

To conclude gl.dim(S) =∞, note that the Koszul dual of S is S! = k{u, v,w}�(R)
where R is the set of relations:

{w2 = cuv, wv = b2vw, wu = buw, vw = c2u2, v2 = bcuw, vu = b2uv}.
Taking the ordering u < v < w, we have shown in Example II.63 that S! has a basis

of irreducible monomials {ui, ujv, ukw}i,j,k∈N. Hence S! is not a finite dimensional

k-vector space and by [Kra, Corollary 5], S has infinite global dimension.

For S = S(a, b, c) with [a ∶ b ∶ c] ∈ {[1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0], [0 ∶ 0 ∶ 1]}, note that

S is Koszul as its ideal of relations is generated by quadratic monomials [PP05,

Corollary 4.3]. Denote these monomials m
1

, m
2

, m
3

. The Koszul dual of S in

this case is S! = k{u, v,w}�(R) where (R) is the ideal of relations generated by the

six monomials not equal to mi (in variables u, v,w). Since S! is again a monomial

algebra, it contains no hidden relations and has a nice basis of irreducible monomials.

In particular, S! contains �i≥0 kpi where pi is the length i word:

pi =
�������������������������������

uvwuvwu . . .����������������������������������������������������������������
i

, if [a ∶ b ∶ c] = [1 ∶ 0 ∶ 0]
uwvuwvu . . .����������������������������������������������������������������

i

, if [a ∶ b ∶ c] = [0 ∶ 1 ∶ 0]
ui, if [a ∶ b ∶ c] = [0 ∶ 0 ∶ 1].
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Therefore S! is not a finite dimensional k-vector space. By [Kra, Corollary 5] these

degenerate Sklyanin algebras have infinite global dimension.

We compute the center of the degenerate Sklyanin algebras.

Proposition III.12. The center of Sdeg is equal to k.

Proof. For a3 = b3 = c3 = 1, we assume that a = 1 as S(a, b, c) ≅ S �1, b
a ,

c
a
�. By

Example II.62, an element f of S(1, b, c) can be written uniquely as f = t
1

+ t
2

z

with ti ∈ k{x, y}. Suppose that f is central. Then fx = xf implies that t
1

x + t
2

zx =
xt

1

+ xt
2

z. Since zx + bxz + cy2 = 0 is a relation of S(1, b, c), we have that

t
1

x + t
2

(−bxz − cy2) = xt
1

+ xt
2

z.

Considering the coe�cients of z, we get that

t
1

x − ct
2

y2 = xt
1

−bt
2

x = xt
2

.

Therefore t
2

= 0 and t
1

∈ k[x]. Likewise by using fy = yf , we conclude that t
2

= 0
and t

1

∈ k[y]. Hence f ∈ k[x] ∩ k[y] = k.
Now take the monomial algebra S(1,0,0) = k{x, y, z}�(yz, zx, xy) whose irre-

ducible basis of monomials is described in the proof of Lemma III.8. Take a central

element f of S(1,0,0). Now fx = xf implies that either f ∈ k[x] or f = ∑�imi where

�i ∈ k and mi is a monomial of the form y�z. Likewise fy = yf implies that f ∈ k[y]
or f = ∑�ini where ni is a monomial of the form z�x. Finally fz = zf yields f ∈ k[z]
or f = ∑�ipi where pi is a monomial of the form x�y. The simultaneous occurrence

of the three outcomes above implies that f ∈ k. Thus Z(S(1,0,0)) = k. With similar

reasoning, we conclude that Z(S(0,1,0)) = Z(S(0,0,1)) = k.
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3.2 Truncated point schemes of Sdeg

The goal of this section is to prove Theorem III.3, i.e. to construct the family of trun-

cated point schemes {Vd ⊆ (P2)×d} associated to the degenerate three-dimensional

Sklyanin algebras Sdeg (see Definition III.2). These schemes will be used in 3.3 for

the construction of a generalized twisted homogeneous coordinate ring, namely the

point parameter ring (Definition III.29).

Recall the definitions of truncated point modules of length d and point modules

given respectively in Definitions II.3 and II.2. We will see in Lemma III.15 that

the family {Vd} plays a role in the study of point modules over Sdeg. First we note

the result below which is a special case of [ATVdB90, Corollary 3.13]. This result

describes the relationship the isomorphism classes of truncated point modules and

of point modules over S(a, b, c) for any [a ∶ b ∶ c] ∈ P2.

Lemma III.13. Let S = S(a, b, c) for any [a ∶ b ∶ c] ∈ P2. Denote by � the set of

isomorphism classes of point modules over S and �d the set of isomorphism classes

of truncated point modules M = d�
i=0 Mi of length d+1. With respect to the truncation

function ⇢d ∶ �d → �d−1 given by M �M�Md, we have that as a set � is the projective

limit of {�d}.
Now we proceed to construct schemes Vd that will parameterize length d truncated

point modules. We remind the reader that length d truncated point schemes, Vd, were

defined in Definition II.4. We now present the definition explicitly for the algebras

S(a, b, c).
Definition III.14. [ATVdB90, 3] The truncated point scheme of length d,

Vd ⊆ (P2)×d for S(a, b, c), is the scheme defined by the multilinearizations of relations
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of S(a, b, c) from Definition III.1. More precisely Vd = V(fi, gi, hi)0≤i≤d−2 where

(3.3)

fi = ayi+1zi + bzi+1yi + cxi+1xi

gi = azi+1xi + bxi+1zi + cyi+1yi
hi = axi+1yi + byi+1xi + czi+1zi.

For example, V
1

= V(0) ⊆ P2 so V
1

= P2. Similarly, V
2

= V(f
0

, g
0

, h
0

) ⊆ P2 × P2.

Lemma III.15. The set �d is parameterized by the scheme Vd.

Proof. This is a special case of [ATVdB90, Proposition 3.9].

In short, to understand point modules over S(a, b, c) for any [a ∶ b ∶ c] ∈ P2,

Lemmas III.13 and III.15 imply that we can now restrict our attention to truncated

point schemes Vd. We point out another useful result pertaining to Vd associated to

S(a, b, c) for any [a ∶ b ∶ c] ∈ P2.

Lemma III.16. The truncated point scheme Vd lies in d copies of E ⊆ P2 where E

is the cubic curve E ∶ (a3 + b3 + c3)xyz − (abc)(x3 + y3 + z3) = 0.
Proof. Let pi denote the point [xi ∶ yi ∶ zi] ∈ P2 and

(3.4) Mabc,i ∶=
���������

cxi azi byi

bzi cyi axi

ayi bxi czi

���������
∈Mat

3

(kxi ⊕ kyi ⊕ kzi).
The point p = (p

0

, p
1

, . . . , pd−1) ∈ Vd ⊆ (P2)×d must satisfy fi = gi = hi = 0 for 0 ≤ i ≤ d−2
by definition of Vd. In other words, one is given Mabc,j ⋅ (xj+1 yj+1 zj+1)T = 0 or

equivalently (xj yj zj) ⋅Mabc,j+1 = 0 for 0 ≤ j ≤ d − 2. Therefore for 0 ≤ j ≤ d − 1,
det(Mabc,j) = 0. This implies that pj ∈ E for each j. Thus p ∈ E×d.
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3.2.1 On the truncated point schemes of some Sdeg

We will show that to study the truncated point schemes Vd of degenerate Sklyanin

algebras, it su�ces to understand the schemes of specific four degenerate Sklyanin

algebras. We use the following notion of a Zhang twist.

Definition III.17. Given a Z-graded k-algebra S = �n∈Z Sn with graded automor-

phism � of degree 0 on S, we form a Zhang twist S� of S by preserving the same

additive structure on S, and defining multiplication ∗ as follows: a ∗ b = ab�
n

for

a ∈ Sn.

The following is a special case of [Zha96, Theorem 1.2].

Theorem III.18. If S is connected graded and generated in degree one, then so is

the algebra S�. We also have an equivalence of categories: S-Gr ∼ S�-Gr.

Realize D from Definition III.1 as the union of three point sets Zi:

(3.5)

Z
1

∶= {[1 ∶ 1 ∶ 1], [1 ∶ ⇣ ∶ ⇣2], [1 ∶ ⇣2 ∶ ⇣]},
Z

2

∶= {[1 ∶ 1 ∶ ⇣], [1 ∶ ⇣ ∶ 1], [1 ∶ ⇣2 ∶ ⇣2]},
Z

3

∶= {[1 ∶ ⇣ ∶ ⇣], [1 ∶ 1 ∶ ⇣2], [1 ∶ ⇣2 ∶ 1]},
Z

0

∶= {[1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0], [0 ∶ 0 ∶ 1]}.
where ⇣ = e2⇡i�3. Pick respective representatives [1 ∶ 1 ∶ 1], [1 ∶ 1 ∶ ⇣], [1 ∶ ⇣ ∶ ⇣], and
[1 ∶ 0 ∶ 0] of Z

1

, Z
2

, Z
3

, and Z
0

.

Lemma III.19. Every degenerate Sklyanin algebra is a Zhang twist of one the fol-

lowing algebras: S(1,1,1), S(1,1, ⇣), S(1, ⇣, ⇣), and S(1,0,0).
Proof. Consider the following graded automorphisms of the degenerate Sklyanin al-

gebras S(a, b, c):
� ∶ {x� ⇣x, y � ⇣2y, z � z} and ⌧ ∶ {x� y, y � z, z � x}.
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Now a routine computation shows that � and ⌧ yield the Zhang twists:

S(1,1,1)� = S(1, ⇣, ⇣2), S(1,1,1)�−1 = S(1, ⇣2, ⇣) for Z
1

;

S(1,1, ⇣)� = S(1, ⇣,1), S(1,1, ⇣)�−1 = S(1, ⇣2, ⇣2) for Z
2

;

S(1, ⇣, ⇣)� = S(1, ⇣2,1), S(1, ⇣, ⇣)�−1 = S(1,1, ⇣2) for Z
3

;

S(1,0,0)⌧ = S(0,1,0), S(1,0,0)⌧−1 = S(0,0,1) for Z
0

.

For instance, consider the Zhang twist S(1,1,1)�. Now it has three quadratic

relations of the form:

{yz + ↵zy + �x2, zx + ↵xz + �y2, xy + ↵yx + �z2},
where ↵, � ∈ k. Note that yz + ↵zy + �x2 is a relation of S(1,1,1)� if and only if

y ⋅z�+↵z ⋅y�+�x ⋅x� is a relation of S(1,1,1). This is equivalent to yz+↵⇣2zy+�⇣x2

equal to zero in S(1,1,1) , which implies ↵ = ⇣ and � = ⇣2. When we consider

the other two relations of S(1,1,1)�, we also get that ↵ = ⇣ and � = ⇣2. Thus

S(1,1,1)� = S(1, ⇣, ⇣2).
By Theorem III.18, it su�ces to study a representative of each of the four classes

of degenerate three-dimensional Sklyanin algebras.

3.2.2 Computation of Vd for S(1,1,1)
We now compute the truncated point schemes of S(1,1,1) in detail. Calculations

for the other three representative degenerate Sklyanin algebras, S(1,1, ⇣), S(1, ⇣, ⇣),
S(1,0,0), will follow with similar reasoning. We first discuss how to build a truncated

point module M ′ of length d, when provided with a truncated point module M of

length d − 1.
Let us explore the correspondence between truncated point modules and trun-

cated point schemes. When given a truncated point module M = d−1�
i=0 Mi ∈ �d−1,

multiplication from S = S(a, b, c) is determined by a point p = (p
0

, . . . , pd−2) ∈ Vd−1

Correction:
The point scheme
of S(1,1,1) is actually
much larger than 
what is computed 
here. Please 
see the corrigendum
to “Degenerate
Sklyanin algebras
and Generalized
Twisted Homo-
geneous Coordinate
rings” J. Alg (2009)
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(Definition III.14, Equation (3.4)) in the following manner. As M is cyclic, Mi has

basis say {mi}. Furthermore for x, y, z ∈ S with

pi = [xi ∶ yi ∶ zi] ∈ P2, we get the left S-action on mi determined by pi:

(3.6)

x ⋅mi = ximi+1, x ⋅md−1 = 0;
y ⋅mi = yimi+1, y ⋅md−1 = 0;
z ⋅mi = zimi+1, z ⋅md−1 = 0.

Conversely given a point p = (p
0

, . . . , pd−2) ∈ Vd−1, one can build a module M ∈
�d−1 unique up to isomorphism by reversing the above process. We summarize this

discussion in the following remark.

Remark III.20. Refer to notation from Lemma III.13. To construct M ′ ∈ �d from

M ∈ �d−1 associated to p ∈ Vd−1, we require pd−1 ∈ P2 such that p′ = (p, pd−1) ∈ Vd.

Now we begin to study the behavior of truncated point modules over Sdeg through

the examination of truncated point schemes in the next two lemmas.

Lemma III.21. Let p = (p
0

, . . . , pd−2) ∈ Vd−1 with pd−2 �∈D (refer to (3.5)). Then for

each i, there exists a unique pd−1 ∈ Zi so that p′ ∶= (p, pd−1) ∈ Vd.

Proof. For Z
1

, we study the representative algebra S(1,1,1). If such a pd−1 exists,

then fd−2 = gd−2 = hd−2 = 0 so we would have

M
111,d−2 ⋅ (xd−1 yd−1 zd−1)T = 0

(Definition III.14, Equation (3.4)). Now we have that rank(M
111,d−2)≤ 2 as

(xd−3 yd−3 zd−3) ⋅M111,d−2 = 0.
By an argument in the proof of Proposition II.15, we see that if rank(M

111,d−2) = 1,

then pd−2 ∈D. Thus rank(M
111,d−2) = 2 when pd−2 �∈D and the tuple (xd−1, yd−1, zd−1)

is unique up to scalar multiple. Thus the point pd−1 is projectively unique.
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To verify the existence of pd−1, we solve the system of equations

(3.7)

fd−2 ∶ yd−1zd−2 + zd−1yd−2 + xd−1xd−2 = 0,
gd−2 ∶ zd−1xd−2 + xd−1zd−2 + yd−1yd−2 = 0,
hd−2 ∶ xd−1yd−2 + yd−1xd−2 + zd−1zd−2 = 0,

x3

d−2 + y3d−2 + z3d−2 = 3xd−2yd−2zd−2,
x3

d−1 + y3d−1 + z3d−1 = 3xd−1yd−1zd−1.
Here, the last two equations come from the fact that pd−2, pd−1 ∈ E (Lemma III.16).

Furthermore with ⇣ = e2⇡i�3, the curve E = E
111

is the union of three projective

lines:

(3.8) P1

A ∶ x = −(y + z), P1

B ∶ x = −(⇣2y + ⇣z), P1

C ∶ x = −(⇣y + ⇣2z)
P1
C

ZZ

⇢⇢

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
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[1:1:1]

[1:⇣2:⇣] [1:⇣:⇣2]

oo //

P1
A

Figure 3.1: The curve E = E111 ⊆ P2 ∶ x3 + y3 + z3 − 3xyz = 0

Using the algebra software Maple, we have the following three solutions to (3.7)

with (pd−2, pd−1) ∈ (E �D) ×E:���������������������
(pd−2 ∈ P1

A, [1 ∶ 1 ∶ 1]),(pd−2 ∈ P1

B, [1 ∶ ⇣ ∶ ⇣2]),(pd−2 ∈ P1

C , [1 ∶ ⇣2 ∶ ⇣])

���������������������
.

Thus when pd−2 �∈D, there exists an unique point pd−1 ∈ Z1

so that

(p
0

, . . . , pd−2, pd−1) ∈ Vd.
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Now consider the following notation.

S(1,1, ⇣) S(1, ⇣, ⇣)
P1

D x = −(y + ⇣2z) x = −(y + ⇣z)
P1

E x = −(⇣2y + z) x = −(⇣y + z)
P1

F x = −⇣(y + z) x = −⇣2(y + z)
For S(1,1, ⇣), the uniqueness of pd−1 still holds when pd−2 �∈ D and the following

are the solutions (pd−2, pd−1) ∈ (E �D) ×E satisfying fd−2 = gd−2 = hd−2 = 0:���������������������
(pd−2 ∈ P1

D, [1 ∶ 1 ∶ ⇣]),(pd−2 ∈ P1

E, [1 ∶ ⇣ ∶ 1]),(pd−2 ∈ P1

F , [1 ∶ ⇣2 ∶ ⇣2])

���������������������
.

For S(1, ⇣, ⇣), again the uniqueness of pd−1 holds when pd−2 �∈ D and we have

similar set of solutions in (E �D) ×E for fd−2 = gd−2 = hd−2 = 0:���������������������
(pd−2 ∈ P1

D, [1 ∶ ⇣ ∶ ⇣]),(pd−2 ∈ P1

E, [1 ∶ 1 ∶ ⇣2]),(pd−2 ∈ P1

F , [1 ∶ ⇣2 ∶ 1])

���������������������
.

For Z
0

, we study the algebra S(1,0,0). Now if pi ∈ E = E1,0,0 satisfies fd−2 = gd−2 =
hd−2 = 0, then we get the system of equations:

(3.9)
yd−1zd−2 = zd−1xd−2 = xd−1yd−2 = 0

xd−2yd−2zd−2 = xd−1yd−1zd−1 = 0
If pd−2 = [0 ∶ yd−2 ∶ zd−2] �∈ D, then both yd−2 and zd−2 ≠ 0. Hence xd−1 = yd−1 = 0 and

pd−1 = [0 ∶ 0 ∶ 1] ∈ Z0

. On the other hand if pd−2 = [1 ∶ yd−2 ∶ zd−2], then zd−1 = 0, i.e.
pd−1 = [xd−1 ∶ yd−1 ∶ 0]. Now since pd−2 �∈ D, we have that either yd−2 or zd−2 ≠ 0. In

the first case, if yd−2 ≠ 0, then xd−1 = 0 and pd−1 = [0 ∶ 1 ∶ 0] ∈ Z0

. Otherwise zd−2 ≠ 0
implies that yd−1 = 0 so pd−1 = [1 ∶ 0 ∶ 0] ∈ Z0

.

Thus we have verified the lemma.
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The next result explores the case when pd−2 ∈ Zi for i = 1,2,3.
Lemma III.22. Let p = (p

0

, . . . , pd−2) ∈ Vd−1 with pd−2 ∈ Zi for i = 1,2,3. Then for

any [yd−1 ∶ zd−1] ∈ P1 there exists a function ✓ of two variables so that

pd−1 = [✓(yd−1, zd−1) ∶ yd−1 ∶ zd−1] �∈ Zi

which satisfies (p
0

, . . . , pd−2, pd−1) ∈ Vd.

Proof. The point p′ = (p, pd−1) ∈ Vd needs to satisfy fi = gi = hi = 0 for 0 ≤ i ≤ d − 2
(Definition III.14). Since p ∈ Vd−1, we need only to consider the equations fd−2 =
gd−2 = hd−2 = 0 with pd−2 ∈ Zi.

We study S(1,1,1) for Z
1

so the relevant system of equations is

fd−2 ∶ yd−1zd−2 + zd−1yd−2 + xd−1xd−2 = 0
gd−2 ∶ zd−1xd−2 + xd−1zd−2 + yd−1yd−2 = 0
hd−2 ∶ xd−1yd−2 + yd−1xd−2 + zd−1zd−2 = 0.

If pd−2 = [1 ∶ 1 ∶ 1] ∈ Z
1

, then xd−1 = −(yd−1 + zd−1) is required. On the other

hand, if pd−2 = [1 ∶ ⇣ ∶ ⇣2] or [1 ∶ ⇣2 ∶ ⇣], we require xd−1 = −⇣(yd−1 + ⇣zd−1) or

xd−1 = −⇣(⇣yd−1 + zd−1) respectively. Thus our function ✓ is defined as

✓(yd−1, zd−1) =
���������������������
−(yd−1 + zd−1), if pd−2 = [1 ∶ 1 ∶ 1]
−(⇣2yd−1 + ⇣zd−1), if pd−2 = [1 ∶ ⇣ ∶ ⇣2]
−(⇣yd−1 + ⇣2zd−1), if pd−2 = [1 ∶ ⇣2 ∶ ⇣].

The arguments for S(1,1, ⇣), S(1, ⇣, ⇣), and S(1,0,0) yield similar results as we now

describe.

For Z
2

, consider the representative algebra S(1,1, ⇣) with corresponding equations

fd−2 = gd−2 = hd−2 = 0. In a similar fashion, we have that:
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✓(yd−1, zd−1) =
���������������������
−(yd−1 + ⇣2zd−1), if pd−2 = [1 ∶ 1 ∶ ⇣]
−(⇣2yd−1 + zd−1), if pd−2 = [1 ∶ ⇣ ∶ 1]
−⇣(yd−1 + zd−1), if pd−2 = [1 ∶ ⇣2 ∶ ⇣2].

For Z
3

, provided S(1, ⇣, ⇣) as our representative algebra, we have that:

✓(yd−1, zd−1) =
���������������������
−(yd−1 + ⇣zd−1), if pd−2 = [1 ∶ ⇣ ∶ ⇣]
−(⇣yd−1 + zd−1), if pd−2 = [1 ∶ 1 ∶ ⇣2]
−⇣2(yd−1 + zd−1), if pd−2 = [1 ∶ ⇣2 ∶ 1].

Lemma III.23. Consider the algebra S(1,0,0). We have that solutions (pd−2, pd−1)
to (3.9), with pd−2 ∈ Z0

, take the following form:

pd−1 =
���������������������
[xd−1 ∶ yd−1 ∶ 0], if pd−2 = [1 ∶ 0 ∶ 0]
[0 ∶ yd−1 ∶ zd−1], if pd−2 = [0 ∶ 1 ∶ 0]
[xd−1 ∶ 0 ∶ zd−1], if pd−2 = [0 ∶ 0 ∶ 1]

Fix a pair (Sdeg, Zi(Sdeg)). We now know if pd−2 �∈ D, then from every truncated

point module of length d over Sdeg we can produce a unique truncated point module

of length d+1. Otherwise if pd−2 ∈ Zi, we get a P1 worth of length d+1 modules. We

summarize this in the following statement.

Proposition III.24. The parameter space of �d over Sdeg is isomorphic to the sin-

gular and nondisjoint union of�����������
three copies of (P1)× d−1

2 and three copies of (P1)× d+1
2 , for d odd;

six copies of (P1)× d

2 , for d even.

The proof of this result will be given in Proposition III.26 below, which will also

yield a more detailed statement. We restrict our attention to S(1,1,1) for reasoning
mentioned in the proofs of Lemmas III.21 and III.22.
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3.2.2.1. Parameterization of �2

Recall that length 3 truncated point modules of �
2

are in bijective correspondence

to points on V
2

⊂ P2 × P2 (Lemma III.15) and it is our goal to depict this truncated

point scheme. By Lemma III.16, we know that V
2

⊆ E ×E.

Now to calculate V
2

, recall that �
2

consists of length 3 truncated point modules

M(3) ∶=M0

⊕M
1

⊕M
2

where Mi is a 1-dimensional k-vector space say with basis mi.

The module M(3) has action determined by (p
0

, p
1

) ∈ V
2

(Equation (3.6)). Moreover

Lemmas III.21 and III.22 provide the precise conditions for (p
0

, p
1

) to lie in E ×E.

Namely,

Lemma III.25. Refer to (3.8) for notation. The set of length 3 truncated point

modules �
2

is parametrized by the scheme V
2

= V(f
0

, g
0

, h
0

) which is the union of the

six subsets:

P1

A × [1 ∶ 1 ∶ 1]; [1 ∶ 1 ∶ 1] × P1

A;

P1

B × [1 ∶ ⇣ ∶ ⇣2]; [1 ∶ ⇣ ∶ ⇣2] × P1

B;

P1

C × [1 ∶ ⇣2 ∶ ⇣]; [1 ∶ ⇣2 ∶ ⇣] × P1

C .

of E ×E. Thus �
2

is isomorphic to 6 copies of P1.

3.2.2.2. Parameterization of �
d

for general d

To illustrate the parametrization of �d, we begin with a truncated point module

M(d+1) of length d+1 corresponding to (p
0

, p
1

, . . . , pd−1) ∈ Vd ⊆ (P2)×d. Due to Lemmas

III.16, III.21, and III.22, we know that (p
0

, p
1

, . . . , pd−1) belongs to either

(E �D) ×Z
1

× (E �D) ×Z
1

× . . .������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
d

or Z
1

× (E �D) ×Z
1

× (E �D) × . . .������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
d

where Z
1

is defined in (3.5).

By adapting the notation of Lemma III.22, we get in the first case that the point
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(p
0

, p
1

, . . . , pd−1) is of the form

([✓(y
0

, z
0

) ∶ y
0

∶ z
0

], [1 ∶ ! ∶ !2], [✓(y
2

, z
2

) ∶ y
2

∶ z
2

], [1 ∶ ! ∶ !2], . . . ) ∈ (P2)×d
where !3 = 1 and ✓(y, z) = −(!y+!2z). Thus in this case, the set of length d truncated

point modules is parameterized by three copies of (P1)×�d�2� with coordinates

([y
0

∶ z
0

], [y
2

∶ z
2

], . . . , [y
2�d�2�−1 ∶ z2�d�2�−1]).

In the second case (p
0

, p
1

, . . . , pd−1) takes the form

([1 ∶ ! ∶ !2], [✓(y
1

, z
1

) ∶ y
1

∶ z
1

], [1 ∶ ! ∶ !2], [✓(y
3

, z
3

) ∶ y
3

∶ z
3

], . . . ) ∈ (P2)×d
and the set of truncated point modules is parameterized with three copies of (P1)×�d�2�
with coordinates ([y

1

∶ z
1

], [y
3

∶ z
3

], . . . , [y
2�d�2�−1 ∶ z2�d�2�−1]).

In other words, we have now proved the next result.

Proposition III.26. Refer to (3.8) for notation. For d ≥ 2 the truncated point

scheme Vd for S(1,1,1) is equal to the union of the six subsets �6

i=1Wd,i of (P2)×d
where

Wd,1 = P1

A × [1 ∶ 1 ∶ 1] × P1

A × [1 ∶ 1 ∶ 1] × . . . ,
Wd,2 = [1 ∶ 1 ∶ 1] × P1

A × [1 ∶ 1 ∶ 1] × P1

A × . . . ,
Wd,3 = P1

B × [1 ∶ ⇣ ∶ ⇣2] × P1

B × [1 ∶ ⇣ ∶ ⇣2] × . . . ,
Wd,4 = [1 ∶ ⇣ ∶ ⇣2] × P1

B × [1 ∶ ⇣ ∶ ⇣2] × P1

C × . . . ,
Wd,5 = P1

C × [1 ∶ ⇣2 ∶ ⇣] × P1

C × [1 ∶ ⇣2 ∶ ⇣] × . . . ,
Wd,6 = [1 ∶ ⇣2 ∶ ⇣] × P1

C × [1 ∶ ⇣2 ∶ ⇣] × P1

C × . . . .
As a consequence, we obtain the proof of Proposition III.24 for S(1,1,1). By the

next result, this holds for the remaining degenerate Sklyanin algebras.
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Proposition III.27. Consider the following notation.

S(1,1, ⇣) S(1, ⇣, ⇣) S(1,0,0)
P1

D x = −(y + ⇣2z) x = −(y + ⇣z) z = 0
P1

E x = −(⇣2y + z) x = −(⇣y + z) x = 0
P1

F x = −⇣(y + z) x = −⇣2(y + z) y = 0
q
1

[1 ∶ 1 ∶ ⇣] [1 ∶ ⇣ ∶ ⇣] [1 ∶ 0 ∶ 0]
q
2

[1 ∶ ⇣ ∶ 1] [1 ∶ 1 ∶ ⇣2] [0 ∶ 1 ∶ 0]
q
3

[1 ∶ ⇣2 ∶ ⇣2] [1 ∶ ⇣2 ∶ 1] [0 ∶ 0 ∶ 1]
For d ≥ 2, the dth truncated point scheme Vd of the algebras S(1,1, ⇣) and of S(1, ⇣, ⇣)
is the union of the six subsets �6

i=1Wd,i of (P2)×d where

Wd,1 = P1

D × {q1} × P1

D × {q1} × . . . ,
Wd,2 = {q1} × P1

D × {q1} × P1

D × . . . ,
Wd,3 = P1

E × {q2} × P1

E × {q2} × . . . ,
Wd,4 = {q2} × P1

E × {q2} × P1

E × . . . ,
Wd,5 = P1

F × {q3} × P1

F × {q3} × . . . ,
Wd,6 = {q3} × P1

F × {q3} × P1

F × . . . .
Moreover the Vd for the algebra S(1,0,0) are given as the union of the following

subsets of (P2)×d:
Wd,1 = P1

D × {q2} × P1

E × {q3} × P1

F × {q1} × P1

D × . . . ,
Wd,2 = {q2} × P1

E × {q3} × P1

F × {q1} × P1

D × {q2} × . . . ,
Wd,3 = P1

E × {q3} × P1

F × {q1} × P1

D × {q2} × P1

E × . . . ,
Wd,4 = {q3} × P1

F × {q1} × P1

D × {q2} × P1

E × {q3} × . . . ,
Wd,5 = P1

F × {q1} × P1

D × {q2} × P1

E × {q3} × P1

F × . . . ,
Wd,6 = {q1} × P1

D × {q2} × P1

E × {q3} × P1

F × {q1} × . . . .
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Proof. This follows by a similar proof to that of Proposition III.26 and is left to the

reader.

We thank Karen Smith for suggesting the following elegant way of interpreting

the point scheme of S(1,1,1).
Remark III.28. We can provide an alternate geometric description of the point

scheme of the � of S(1,1,1). Let G ∶= Z
3

� Z
2

=<⇣,�> where ⇣ = e2⇡i�3 and �2 = 1.
We define a G-action on P2 × P2 as follows:

⇣([x ∶ y ∶ z], [u ∶ v ∶ w]) = ([x ∶ ⇣2y ∶ ⇣z], [u ∶ ⇣v ∶ ⇣2w])
�([x ∶ y ∶ z], [u ∶ v ∶ w]) = ([u ∶ v ∶ w], [x ∶ y ∶ z])

Note that G stabilizes E ×E and acts transitively on the W
2,i. We extend the action

of G to (P2 × P2)×∞ diagonally. Now we interpret � as

� = lim←�Vd = lim←�V2d = lim←��i W
2d,i = G ⋅ (P1

A × [1 ∶ 1 ∶ 1])×∞,
as sets.

3.3 Point parameter ring of S(1,1,1)
We now construct a graded associative algebra P from truncated point schemes

of the degenerate Sklyanin algebra S = S(1,1,1). The analogous result for the other
degenerate Sklyanin algebras will follow in a similar fashion and we leave the details

to the reader. As is true for the Sklyanin algebras themselves, it will be shown that

this algebra P is a proper factor of S(1,1,1) and its properties closely reflect those

of S(1,1,1). We will for example show that P is not right noetherian, nor a domain.

In other words, we establish Theorem III.4.

The definition of the algebra P initially appears in [ATVdB90, 3]. In particular

for P = P (S(a, b, c)), recall that we have projection maps pr
1,...,d−1 and pr

2,...,d from



74

(P2)×d to (P2)×d−1. Restrictions of these maps to the truncated point schemes Vd ⊆
(P2)×d (Definition III.14) yield

pr
1,...,d−1(Vd) ⊂ Vd−1 and pr

2,...,d(Vd) ⊂ Vd−1 for all d.

Definition III.29. Given the above data, we expand on the definition from the

introduction. The point parameter ring P = P (S(a, b, c)) is an associative N-

graded ring defined as follows. First Pd = H0(Vd,Ld) where Ld is the restriction of

invertible sheaf

pr∗
1

OP2(1)⊗ . . .⊗ pr∗dOP2(1) ≅ O(P2)×d(1, . . . ,1)
to Vd. The multiplication map µi,j ∶ Pi ×Pj → Pi+j is then defined by applying H0 to

the isomorphism

pr∗
1,...,i(Li)⊗O

V

i+j pr
∗
i+1,...,i+j(Lj)→ Li+j.

We declare P
0

= k.
From now on, we restrict our attention to P (S(a, b, c)) with [a ∶ b ∶ c] ∈ D, or

rather for Sdeg. We will later see in Theorem III.36 that P (Sdeg) is generated in

degree one; thus Sdeg surjects onto P as (Sdeg)1 ≅ P1

. To begin the analysis of P for

S(1,1,1), recall that V
1

= P2 so

P
1

=H0(V
1

, pr∗
1

OP2(1)) = kx⊕ ky ⊕ kz

where [x ∶ y ∶ z] are the coordinates of P2. For d ≥ 2 we will compute dimk Pd

and then proceed to the more di�cult task of identifying the multiplication maps

µi,j ∶ Pi ×Pj → Pi+j. Before we get to specific calculations for d ≥ 2, let us recall that
the schemes Vd are realized as the union of six subsets {Wd,i}6i=1 of (P2)×d described

in Proposition III.26 and Equation (3.8). These subsets intersect nontrivially so that

each Vd for d ≥ 2 is singular. More precisely,
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Remark III.30. A routine computation shows that the singular subset, Sing(Vd),

consists of six points:

vd,1 ∶= ([1 ∶ 1 ∶ 1], [1 ∶ ⇣ ∶ ⇣2], [1 ∶ 1 ∶ 1], [1 ∶ ⇣ ∶ ⇣2], . . . ) ∈Wd,2 ∩Wd,3,

vd,2 ∶= ([1 ∶ 1 ∶ 1], [1 ∶ ⇣2 ∶ ⇣], [1 ∶ 1 ∶ 1], [1 ∶ ⇣2 ∶ ⇣], . . . ) ∈Wd,2 ∩Wd,5,

vd,3 ∶= ([1 ∶ ⇣ ∶ ⇣2], [1 ∶ 1 ∶ 1], [1 ∶ ⇣ ∶ ⇣2], [1 ∶ 1 ∶ 1], . . . ) ∈Wd,1 ∩Wd,4,

vd,4 ∶= ([1 ∶ ⇣ ∶ ⇣2], [1 ∶ ⇣ ∶ ⇣2], [1 ∶ ⇣ ∶ ⇣2], [1 ∶ ⇣ ∶ ⇣2], . . . ) ∈Wd,3 ∩Wd,4,

vd,5 ∶= ([1 ∶ ⇣2 ∶ ⇣], [1 ∶ 1 ∶ 1], [1 ∶ ⇣2 ∶ ⇣], [1 ∶ 1 ∶ 1], . . . ) ∈Wd,1 ∩Wd,6,

vd,6 ∶= ([1 ∶ ⇣2 ∶ ⇣], [1 ∶ ⇣2 ∶ ⇣], [1 ∶ ⇣2 ∶ ⇣], [1 ∶ ⇣2 ∶ ⇣], . . . ) ∈Wd,5 ∩Wd,6.

where ⇣ = e2⇡i�3.
3.3.1 Computing the dimension of Pd

Our objective in this section is to prove

Proposition III.31. For d ≥ 1, dimk Pd = 3 �2� d+12 � + 2� d−12 �� − 6.
We first point out a result of Künneth that will be used several times in the rest

of the chapter.

Theorem III.32. [BG06, A.10.37] (Künneth’s Formula) Let X
1

and X
2

be varieties

over k. Let E be a locally free sheaf on X
1

and let F be a coherent sheaf on X
2

. Then

we have that

Hn(X
1

×X
2

, pr∗
1

E ⊗ pr∗
2

F) ≅ �
p+q=nHp(X

1

,E)⊗Hq(X
2

,F).
For the rest of the section, let 1 denote a sequence of 1s of appropriate length.

Now consider the normalization morphism ⇡ ∶ V ′d → Vd where V ′d is the disjoint union

of the six subsets {Wd,i}6i=1 mentioned in Proposition III.26. This map induces the

following short exact sequence of sheaves on Vd:

(3.10) 0→ OV
d

(1)→ (⇡∗OV ′
d

)(1)→ S(1)→ 0,
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where S is the skyscraper sheaf whose support is Sing(Vd), that is S =�6

k=1O{v
d,k

}.
Note that we have

(3.11) H0(Vd, (⇡∗OV ′
d

)(1)) ≅
k−v.s. H0(V ′d ,OV ′

d

(1))
since the normalization morphism is a finite map, which in turn is an a�ne map

[Har77, Exercises II.5.17(b), III.4.1]. To complete the proof of the proposition, we

make the following assertion:

Sublemma III.33. H1(Vd,OV
d

(1)) = 0.
Assuming that Sublemma III.33 holds, we get from (3.10) the following long exact

sequence of cohomology:

0→H0(Vd,OV
d

(1)) →H0(Vd, (⇡∗OV ′
d

)(1))
→H0(Vd,S(1)) → H1(Vd,OV

d

(1)) = 0.
Thus, with writing h0(X,L) = dimkH0(X,L), (3.11) implies that

dimk Pd = h0(OV
d

(1)) = h0((⇡∗OV ′
d

)(1)) − h0(S(1))
= h0(OV ′

d

(1)) − h0(S(1))
= ∑6

i=1 h0(OW
d,i

(1)) − 6.
Therefore applying Proposition III.24 and Theorem III.32 completes the proof of

Proposition III.31. It now remains to verify Sublemma III.33.

Proof of Sublemma III.33: By the discussion above, it su�ces to show that

�d ∶H0(V ′d ,OV ′
d

(1))→H0 � 6�
k=1{vd,k}, S(1)�

is surjective. Referring to the notation of Proposition III.26 and Remark III.30, we

choose vd,i ∈ Supp(S(1)) and Wd,k
i

containing vd,i. This Wd,k
i

contains precisely two

points of Supp(S(1)) and say the other is vd,j for j ≠ i. After choosing a basis {ti}6i=1
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for the six-dimensional vector space H0(S(1)) where ti(vd,j) = �ij, we construct a

preimage of each ti. Since OW
d,k

i

(1) is a very ample sheaf, it separates points. In

other words there exists s̃i ∈ H0(OW
d,k

i

(1)) such that s̃i(vd,j) = �ij. Extend this

section s̃i to si ∈H0(OV ′
d

(1)) by declaring si = s̃i on Wd,k
i

and si = 0 elsewhere. Thus

�d(si) = ti for all i and the map �d is surjective as desired.

This concludes the proof of Proposition III.31.

Corollary III.34. We have that P has exponential growth hence infinite GK dimen-

sion. We also get that P is not left or right noetherian.

Proof. Recall from Proposition III.31 that dimk Pd = 3 �2� d−12 � + 2� d+12 � − 2�, which is

greater than 3 ⋅ 2d�2 for d >> 0. Moreover

�
i≤d 3 ⋅ 2i�2 ≥ 3 �2�d�2� − 1) =∶ sd.

Since limd s
1�d
d =√2, we have that P has exponential growth. By Theorem II.30, the

ring P is not left or right noetherian.

We can also determine the Hilbert series of P .

Proposition III.35. HP (t) = (1 + t2)(1 + 2t)(1 − 2t2)(1 − t) .
Proof. Recall from Proposition III.31 that dimk Pd = 3 �2� d−12 � + 2� d+12 �� − 6 for d ≥ 1
and that dimk P0

= 1. Thus
HP (t) = 1 + 3��

d≥12�
d−1
2
�td +�

d≥12�
d+1
2
�td − 2�

d≥1 td�= 1 + 3�t�
d≥02�

d

2
�td + 2t�

d≥02�
d

2
�td − 2t�

d≥0 td� .
Consider generating functions a(t) = ∑d≥0 adtd and b(t) = ∑d≥0 bdtd for the respective

sequences ad = 2�d�2� and bd = 2�d�2�. Elementary operations result in a(t) = 1+2t
1−2t2 and

b(t) = 1+t
1−2t2 . Hence
HP (t) = 1 + 3 �t� 1 + 2t

1 − 2t2� + 2t� 1 + t
1 − 2t2� − 2t� 1

1 − t�� = (1 + t2)(1 + 2t)(1 − 2t2)(1 − t) .
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3.3.2 The multiplication maps µij ∶ Pi × Pj → Pi+j

In this section we examine the multiplication of the point parameter ring P of

S(1,1,1). In particular, we show that the multiplication maps are surjective which

results in the following theorem.

Theorem III.36. The point parameter ring P of S(1,1,1) is generated in degree

one.

With similar reasoning, the ring P = P (Sdeg) is generated in degree one for all Sdeg.

We leave the details to the reader.

Proof. It su�ces to prove that the multiplication maps µd,1 ∶ Pd × P1

→ Pd+1 are

surjective for d ≥ 1. Recall from Definition III.29 that µd,1 =H0(md) where md is the

isomorphism

md ∶ OV
d

×P2(1, . . . ,1,0)⊗O
V

d+1 O(P2)×d(0, . . . ,0,1)→ OV
d+1(1, . . . ,1).

To use the isomorphism md, we employ the following commutative diagram:

(3.12)

OV
d

×P2(1, . . . ,1,0)⊗O(P2)×d+1 O(P2)×d+1(0, . . . ,0,1)
✏✏

t
d

++

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

OV
d

×P2(1, . . . ,1,0)⊗O
V

d+1 O(P2)×d+1(0, . . . ,0,1) m
d

// OV
d+1(1, . . . ,1).

The source of td is isomorphic to OV
d

×P2(1, . . . ,1) and the map td is given by restric-

tion to Vd+1. Hence we have the short exact sequence

(3.13) 0�→ I V

d+1
V

d

×P2
(1)�→ OV

d

×P2(1) t
d�→ OV

d+1(1)�→ 0,
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where I V

d+1
V

d

×P2
is the ideal sheaf of Vd+1 defined in Vd × P2. Since Theorem III.32

and Sublemma III.33 implies that H1(OV
d

×P2(1)) = 0, the cokernel of H0(td) is

H1�I V

d+1
V

d

×P2
(1)�. Now we assert:

Proposition III.37. H1�I V

d+1
V

d

×P2
(1)� = 0 for d ≥ 1.

By assuming that Proposition III.37 holds, we get the surjectivity of H0(td) for

d ≥ 1. Now by applying the global section functor to Diagram (3.12), we have that

H0(md) = µd,1 is surjective for d ≥ 1. This concludes the proof of Theorem III.36.

Proof of III.37. Consider the case d = 1. We study the ideal sheaf I V2
P2×P2

∶= IV2 by

using the resolution of the ideal of defining relations (f
0

, g
0

, h
0

) for V
2

(Equations

(3.3)) in the N2-graded ring R = k[x
0

, y
0

, z
0

, x
1

, y
1

, z
1

]. Note that each of the defining

equations have bidegree (1,1) in R and we get the following resolution:

0→ OP2×P2(−3,−3)→ OP2×P2(−2,−2)⊕3 → OP2×P2(−1,−1)⊕3 → IV2 → 0.

Twisting the above sequence with OP2×P2(1,1) we get

0→ OP2×P2(−2,−2)→ OP2×P2(−1,−1)⊕3 → O⊕3P2×P2

f→ IV2(1,1)→ 0.

Let K = ker(f). Then h0(IV2(1,1)) = 3 − h0(K) + h1(K). On the other hand,

H1(OP2(j)) = H2(OP2(j)) = 0 for j = −1,−2. Thus Theorem III.32 applied the

cohomology of the short exact sequence

0→ OP2×P2(−2,−2)→ OP2×P2(−1,−1)⊕3 → K → 0

results in h0(K) = h1(K) = 0. Hence h0(IV2(1,1)) = 3.
Now using the long exact sequence of cohomology arising from the short exact

sequence

0→ IV2(1,1)→ OP2×P2(1,1)→ OV2(1,1)→ 0,
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and the facts:

h0(IV2(1,1)) = 3, h0(OP2×P2(1,1)) = 9
h0(OV2(1,1)) = dimk P2

= 6, h1(OP2×P2(1,1)) = 0
we conclude that H1(IV2(1,1)) = 0.

For d ≥ 2 we will construct a commutative diagram to assist with the study of

the cohomology of the ideal sheaf I V

d+1
V

d

×P2
(1). Recall from (3.10) that we have the

following normalization sequence for Vd:

0�→ OV
d

�→ 6�
i=1 OW

d,i

�→ 6�
k=1O{vd,k} �→ 0. ( d)

Consider the sequence

pr∗
1,...,d �( d)⊗O(P2)×d(1)�⊗O(P2)×d+1 pr∗d+1OP2(1)

and its induced sequence of restrictions to Vd+1, namely

(3.14) 0→ OV
d

×P2(1)�
V
d+1 → 6�

i=1 OW
d,i

×P2(1)�
V
d+1 → 6�

k=1O{vd,k}×P2(1)�
V
d+1 → 0.

Now Vd+1 ⊆ Vd × P2 and (Wd,i × P2) ∩ Vd+1 = Wd+1,i due to Proposition III.26 and

Remark III.30. We also have that ({vd,k}×P2)∩Vd+1 = {vd+1,k} for all i,k. Therefore
the sequence (3.14) is equal to ( d+1)⊗O(P2)×d+1(1). In other words, we are given the

commutative diagram:

0 // OV
d

×P2(1)
✏✏

//

6�
i=1 OW

d,i

×P2(1)
✏✏

//

6�
k=1O{vd,k}×P2(1)

✏✏

// 0

0 // OV
d+1(1) //

6�
i=1 OW

d+1,i(1) //

6�
k=1O{vd+1,k}(1) // 0.

Diagram 1: Understanding I Vd+1
Vd×P2

(1, . . . ,1)
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where the vertical maps are given by restriction to Vd+1. Observe that the kernels of

the vertical maps (from left to right) are respectively I V

d+1
V

d

×P2
(1),�

i

I W

d+1,i
W

d,i

×P2
(1), and

�
k

I {v
d+1,k}{v
d,k

}×P2
(1), and the cokernels are all 0.

By the Sublemma III.33 and Theorem III.32, we have that

H1(OV
d

×P2(1)) =H1(OV
d+1(1)) = 0.

Hence the application of the global section functor to Diagram 1 yields Diagram 2

below.
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0 ✏✏

0 ✏✏

0 ✏✏

H
0

�V d×
P2

,I V d+
1

V

d

×P2
(1)�

✏✏

6 � i=1H
0

�W d,
i
×P2 ,

I W d+
1
,
i

W

d
,
i

×P2
(1)�

↵

✏✏

 
//

_
_

_
_

6 � k
=1H

0

�{v d,
k
}×P

2

,I {v d
+1,

k

}
{v d

,
k

}×P
2

(1)�
�

✏✏

0
//

H
0

(V d×
P2

,O V d×
P2
(1))

//

✏✏

6 � i=1H
0

� W d,i
×P2 ,

O W d,i
×P2 (1

)�
�

✏✏

⌫
//

6 � k
=1H

0

� {v d,k
}×P

2

,O {v d
,
k

}×P2
(1)�

�

✏✏

//

0

0
//

H
0

(V d+1
,O V d+

1
(1))

//

✏✏

6 � i=1H
0

� W d+
1
,i
,O W d

+1,
i

(1)�
//

✏✏

6 � k
=1H

0

� {v d+
1
,k
},O {

v
d
+1,

k

}(1)�
✏✏

//

0

H
1

�V d×
P2

,I V d+
1

V

d

×P2
(1)�

6 � i=1H
1

�W d,
i
×P2 ,

I W d+
1
,
i

W

d
,
i

×P2
(1)�

6 � k
=1H

1

�{v d,
k
}×P

2

,I {v d
+1,

k

}
{v d

,
k

}×P
2

(1)�

D
ia
gr
am

2:
In
d
u
ce
d
C
oh

om
ol
og
y
fr
om

D
ia
gr
am

1
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Now by the Snake Lemma, we get the following sequence:

. . .�→ 6�
i=1 H0 �I W

d+1,i
W

d,i

×P2
(1)�  �→ 6�

k=1H0 �I {v
d+1,k}{v
d,k

}×P2
(1)�

�→H1 �I V

d+1
V

d

×P2
(1)��→ 6�

i=1 H1 �I W

d+1,i
W

d,i

×P2
(1)�→ . . . .

In Lemma III.38, we will show that�
i

H1�I W

d+1,i
W

d,i

×P2
(1)� = 0 for d ≥ 2. Furthermore

the surjectivity of the map  will follow from Lemma III.39. This will complete the

proof of Proposition III.37.

Lemma III.38.
6�
i=1 H1�Wd,i × P2, I W

d+1,i
W

d,i

×P2
(1)� = 0 for d ≥ 2.

Proof. We consider the di↵erent parities of d and i separately. For d even and i odd,

I W

d+1,i
W

d,i

×P2
≅ OW

d,i

×P2(0, . . . ,0,−1)
because Wd+1,i is defined in Wd,i × P2 by one equation of degree (0, . . . ,0,1) (Propo-
sition III.26). Twisting by O(P2)×d+1(1, . . . ,1) results in
(3.15) H1 �I W

d+1,i
W

d,i

×P2
(1, . . . ,1)� ≅H1 �OW

d,i

×P2(1, . . . ,1,0)� .
SinceWd,i is the product of P1 and points lying in P2 andH1(OP1(1)) =H1(O{pt}(1)) =
H1(OP2) = 0, Theorem III.32 implies that the right hand side of (3.15) is equal to

zero.

Consider the case of d and i even. As pr
1,...,d(Wd+1,i) = Wd,i and

prd+1(Wd+1,i) = [1 ∶ ! ∶ !2] for ! = !d,i a third of unity, we have that Wd+1,i is

defined in Wd,i × P2 by two equations of degree (0, . . . ,0,1). The defining equations

(in variables x, y, z) of [1 ∶ ! ∶ !2] form a k[x, y, z]-regular sequence and so we have



84

the Koszul resolution of I W

d+1,i
W

d,i

×P2
⊗O(P2)×d+1(1, . . . ,1):

(3.16)
0→ OW

d,i

×P2(1, . . . ,1,−1)→ OW
d,i

×P2(1, . . . ,1,0)⊕2
→ I W

d+1,i
W

d,i

×P2
(1, . . . ,1) → 0.

Now apply the global section functor to sequence (3.16) and note that

Hj(OW
d,i

(1, . . . ,1)) =Hj(OP2) =Hj(OP2(−1)) = 0 for j = 1,2.
Hence Theorem III.32 yields

H1 �OW
d,i

×P2(1, . . . ,1,0)�⊕2 =H2 �OW
d,i

×P2(1, . . . ,1,−1)� = 0.
Therefore H1�I W

d+1,i
W

d,i

×P2
(1)� = 0 for d and i even.

We conclude that for d even, we know
6�
i=1 H1�I W

d+1,i
W

d,i

×P2
(1)�= 0. For d odd, the same

conclusion is drawn by swapping the arguments for the i even and i odd subcases.

Lemma III.39. The map  is surjective for d ≥ 2.
Proof. Refer to the notation from Diagram 2. To show  is onto, here is our plan of

attack.

1. Choose a basis of�
k

H0�I {v
d+1,k}{v
d,k

}×P2
(1)� so that each basis element t lies in

H0�I {v
d+1,k0}{v
d,k0

}×P2
(1)� for some k = k

0

. For such a basis element t, identify its image

under � in�
k

H0 �O{v
d,k

}×P2(1)�.
2. Construct for �(t) a suitable preimage s ∈ ⌫−1(�(t)).
3. Prove s ∈ ker(�).

As a consequence, s lies in�
i

H0�I W

d+1,i
W

d,i

×P2
(1)� and serves as a preimage to t under

 . In other words,  is surjective. To begin, fix such a basis element t and integer

k
0

.
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Step 1: Observe that pr
1,...,d({vd+1,k0}) = {vd,k0} and prd+1({vd+1,k0}) = [1 ∶ ! ∶ !2]

for some !, a third root of unity (Remark III.30). Thus our basis element t ∈
�
k

H0�I {v
d+1,k}{v
d,k

}×P2
(1)� is of the form

(3.17) t = a(!xd − yd) + b(!2xd − zd)
for some a, b ∈ k, with {!xd − yd, !2xd − zd} defining [1 ∶ ! ∶ !2] in the (d + 1)st copy
of P2. Note that � is the inclusion map so we may refer to �(t) as t. This concludes
Step 1.

Step 2: Next we construct a suitable preimage s ∈ ⌫−1(�(t)). Referring to Remark

III.30, let us observe that for all k, there is an unique even integer := i′′k and unique

odd integer := i′k so that vd,k ∈ Wd,i′′
k

∩ Wd,i′
k

for all k = 1, . . . ,6. For instance with

k
0

= 1, we consider the membership vd,1 ∈Wd,2 ∩Wd,3; hence i′′
1

= 2 and i′
1

= 3.
As a consequence, �(t) has preimages under ⌫ in

H0 �Wd,i′′
k0
× P2,OW

d,i

′′
k0
×P2(1)�⊕ H0 �Wd,i′

k0
× P2,OW

d,i

′
k0
×P2(1)� .

For d even (respectively odd) we write ik0 ∶= i′′k0 (respectively ik0 ∶= i′k0). Therefore we
intend to construct s ∈ ⌫−1(t) belonging to H0�OW

d,i

k0
×P2(1)�. However this Wd,i

k0

will also contain another point vd,j for some j ≠ k
0

. Let us define the global section

s̃ ∈ H0�OW
d,i

k0
×P2(1)� as follows. Since OW

d,i

k0
(1) is a very ample sheaf, we have a

global section s̃k0 separating the points vd,k0 and vd,j; say s̃k0(vd,k) = �k0,k. We then

use (3.17) to define s̃ by

s̃ = s̃k0 ⋅ [a(!xd − yd) + b(!2xd − zd)].
where [1 ∶ ! ∶ !2] = prd+1({vd+1,k0}). We now extend this section s̃ to

s ∈ 6�
i=1 H0 �OW

d,i

×P2(1)� ≅ � 6�
i=1 H0 �OW

d,i

(1)��⊗H0(OP2(1)).
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This is achieved by setting s = s̃ on Wd,i
k0
× P2 and 0 elsewhere. To check that

⌫(s) = t, note
(3.18) s = 6�

i=1 si where si ∈H0 �OW
d,i

×P2(1)� , si =
���������������
s̃, i = ik0 ,
0, i ≠ ik0 ;

Therefore by the construction of s̃, we have ⌫(s̃) = t�{v
d,k0
}×P2 . Hence we have built

our desired preimage s ∈ ⌫−1(t) and this concludes Step 2.

Step 3: Recall the structure of s from (3.18). By definition of �, we have that

�(s) = � ��6

i=1 si� is equal to �6

i=1 �si�W
d+1,i�.

For i ≠ ik0 , we clearly get that si�W
d+1,i = 0. On the other hand, the key point of

our construction is that Wd+1,i
k0
=Wd,i

k0
× [1 ∶ ✏ ∶ ✏2] for some ✏3 = 1 as ik0 is chosen

to be even (respectively odd) when d is even (respectively odd) (Proposition III.26).

Moreover vd+1,k0 ∈Wd+1,i
k0

and

prd+1(Wd+1,i
k0
) = prd+1({vd+1,k0}) = [1 ∶ ! ∶ !2]

where ! is defined by Step 1 and Remark III.30. Thus ✏ = !. Now we have

si
k0
�
W

d+1,i
k0

= s̃k0 ⋅ [a(!xd − yd) + b(!2xd − zd)]�[1∶!∶!2] = 0.
Therefore si�W

d+1,i = 0 for all i = 1, . . . ,6. Hence �(s) = 0.
Hence Steps 1-3 are complete which concludes the proof of Lemma III.39.

Consequently, we have verified Proposition III.37.

One of the main results why twisted homogeneous coordinate rings are so useful

for studying Sklyanin algebras is that the former are factors of their corresponding

Sklyanin algebra (by some homogeneous element; refer to Theorem II.16). The

following corollaries to Theorem III.36 illustrate an analogous result for Sdeg.
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Corollary III.40. Let P be the point parameter ring of a degenerate Sklyanin algebra

Sdeg. Then P ≅ Sdeg�K for some ideal K of Sdeg that has six generators of degree 4

and possibly higher degree generators.

Proof. Since (Sdeg)1 ≅ P1

, we have by Theorem III.36 that Sdeg surjects onto P say

with kernel K. By Lemma III.8 we have that dimk S4

= 57, yet we know dimk P4

=
63 by Proposition III.31. Hence dimkK4

= 6. The same results also imply that

dimk Sd = dimk Pd for d ≤ 3.
Corollary III.41. The ring P = P (Sdeg) is neither a domain or Koszul.

Proof. By Corollary III.9, there exist linear nonzero elements u, v ∈ S with uv = 0.
The image of u and v are nonzero, hence P is not a domain due to Corollary III.40.

Since P has degree 4 relations, it does not possess the Koszul property.

3.4 Open problems pertaining to point parameter rings

This section is dedicated to furthering the study of noncommutative coordinate

rings in noncommutative projective algebraic geometry. In particular, we outline

open problems pertaining to the point parameter rings introduced in Definition I.9

(or in Definition III.29 for three-dimensional Sklyanin algebras). This is with a view

towards a theory that encompasses all coordinate rings arising from the geometric

data of noncommutative connected graded algebras.

The problems discussed in the section are prompted by the observation that one

can produce point scheme data (Definition-Lemma II.6) and subsequently a point

parameter ring for any connected graded ring. Recall that point parameter rings are

thought of as generalizations of twisted homogeneous coordinate rings. Furthermore

the catalyst for the first task is the relationship between three-dimensional Sklyanin

algebras, Skly
3

, and twisted homogeneous coordinate rings. Namely Theorem II.16
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states that the point scheme data of a generic Skly
3

stabilizes to a smooth cubic

curve E, and there is a ring surjection from this Skly
3

to a twisted homogeneous

coordinate ring B = B(E) with kernel generated by the degree 3 element g. See

Figure 2.8 for a depiction.

Question III.42. Let A be a connected graded ring for which there does not exist a

corresponding twisted homogeneous coordinate ring. In other words, the point scheme

data of A does not stabilize to a projective scheme. Determine conditions on A so

that there is a ring surjection from A onto its point parameter ring P (A).
Now the techniques of [ATVdB90], specifically the construction of point scheme

data and noncommutative coordinate rings, is typically applied to strongly noethe-

rian rings.

Definition III.43. A k-algebra A is said to be strongly (left) noetherian if A⊗kC

is a left noetherian ring for all commutative noetherian k-algebras C.

In fact, we have a result reminiscent of Theorem II.16 for all strongly noetherian

connected graded k-algebras.

Theorem III.44. [AZ01, Corollaries E4.11,E4.12] [RZ08, Theorem 1.1] Let A be

a strongly noetherian connected graded k-algebra, which is generated in degree one.

Then, we have that the following statements hold.

1. The point scheme X of A exists.

2. There is a ring homomorphism from A to a canonically constructed twisted ho-

mogeneous coordinate ring B(X,L,�), which is surjective in high degree. More-

over, the sheaf L is �-ample and the kernel of this map is known.

Only recently have these methods been extended to a class of non-strongly noethe-

rian rings, so-called näıve blowups [KRS05]. Such rings are in fact noetherian and
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serve as examples in the ongoing program of classifying noncommutative surfaces.

Meanwhile, more peculiar algebras have recently been discovered in [RS] and essen-

tially nothing is known about their geometry. This prompts the following project.

Question III.45. (Toby Sta↵ord) Formulate a theory of noncommutative coordi-

nate rings that encapsulates results on twisted homogeneous coordinate rings, point

parameter rings, and näıve blowup rings constructed from the geometric data of a

given connected graded noetherian algebra. Secondly, apply this theory to establish

geometric structure for the rings of [RS].

This question is partially answered in recent work of Nevins and Sierra.

Theorem III.46. [NSa] Under several technical conditions we have that if A is a

noetherian connected graded k-algebra, generated in degree one, then there exists a

näıve blowup algebra S for which A surjects onto S in high degree.

It is also conjectured that Question III.42 should speak to a class of noncommuta-

tive graded rings properly containing the noetherian structures. Namely we consider

the class of coherent rings, which is motivated by the recent work on coherent non-

commutative algebraic geometry [Pio08, Pol05]. Their results thus far include the

classification of noncommutative projective lines and the definition of a coordinate

ring of a noncommutative coherent projective scheme (Definition III.51, Theorem

III.54). Details are found in the next section.

Question III.47. (Lance Small, Paul Smith) Determine if the rings Sdeg and P (Sdeg)
are coherent. If so, then determine whether P (Sdeg) arises as a coordinate ring of a

noncommutative coherent projective scheme in the sense of [Pio08].

We show in the next section that the degenerate Sklyanin algebras are indeed

coherent, yet it is not known if this is true for P (Sdeg).



90

3.5 On coherent noncommutative algebraic geometry

This section further addresses Question III.47 in the previous section. First we

introduce Piontkovskii-Polishchuk’s theory of coherent noncommutative algebraic ge-

ometry, beginning with the definition, some properties, and examples of coherent

(graded) algebras. We then discuss the notion of projective schemes in terms of coher-

ent noncommutative algebraic geometry. Lastly we prove that degenerate Sklyanin

algebras (Definition III.2) are coherent (Proposition III.55), and provide some con-

sequences afterward.

Definition III.48. [Lam99, 4G]

1. A finitely generated left module M is coherent if every finitely generated sub-

module is finitely presented. Analogously a finitely generated graded module

is graded coherent if every graded finitely generated submodule is finitely

presented.

2. A (graded) algebra A is left (graded) coherent if every (homogeneous) finitely

generated left-sided ideal in A is finitely presented, i.e. A is a (graded) coherent

as a left module over itself.

3. We have analogous definitions for right coherence. Moreover an algebra is co-

herent if it is both left and right coherent.

Examples of (left) coherent rings include (left) noetherian rings and (left) semi-

hereditary rings [Lam99, Example 4.46]. Moreover we have that the free algebras

(on finitely many generators) are coherent [Pol05, Corollary 3.2].

Here are a couple of results that will help determine the coherence of a ring.

Lemma III.49. [Lam99, Example 4.61(c)] Let I is a homogeneous ideal of a ring A,
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which is finitely generated as a left (right) ideal. If A is left (right) graded coherent,

then A�I is left (right) coherent.

Lemma III.50. [Pio08, Proposition 3.2] Let B = A�I where the algebra B is left

(right) Noetherian and the ideal I is free as a right (left) A-module. Then the algebra

A is left (right) graded coherent.

Motivated by Artin and Zhang’s approach to (noetherian) noncommutative alge-

braic geometry [AZ94], namely their construction of noncommutative schemes (see

2.1.5), Piontkovskii developed a version of a noncommutative projective scheme for

the coherent setting [Pio08].

Definition III.51. [Pio08, 1] Provided a coherent algebra A, a coherent projec-

tive scheme is given by the abstract triple

(A − c.qgr,A, s),
where A-c.qgr is the quotient category of finitely presented (=graded coherent) left

graded A-modules by finite-dimensional modules, A is the image of A in A-c.qgr,

and s is the autoequivalence of A-c.qgr induced by shift of grading.

The first non-trivial examples of this theory, namely coherent noncommutative

projective lines, are given below.

Definition III.52. A graded algebra A is regular if it has finite global dimension

d, and Extq(k,A) = �d,q ⋅ k.
Theorem III.53. [Zha98, Theorem 0.1] A connected graded algebra is regular of

global dimension 2 if and only if A ≅ k{x
1

, . . . , xn}�(b) with:
1. n ≥ 2;
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2. If the xi’s are labeled so that 1 ≤ deg x
1

≤ ⋅ ⋅ ⋅ ≤ deg xn, then deg xi + deg xn−i is a
constant for all i,

3. There is a graded algebra automorphism ↵ of k{x
1

, . . . , xn} so that

b = n�
i=1 xi↵(xn−i).

In fact, such algebras are noetherian if and only if n = 2 [Zha98, Corollary 1.2].

Piontkovskii proves that all of these algebras are graded coherent [Pio08, Theorem

4.3]. Now we consider the algebras of Theorem III.53 that are generated in degree

one.

Theorem III.54. [Pio08, Theorem 1.4, Proposition 1.5] The coherent noncommu-

tative P1 are classified. These are precisely the regular algebras, finitely generated in

degree one, of global dimension 2.

We aim to include degenerate Sklyanin algebras and eventually point parameter

rings P (A) (for arbitrary connected graded algebras A) into the theory of coherent

noncommutative algebraic geometry. The following result is the first step towards

this goal.

Proposition III.55. The degenerate Sklyanin algebras are graded coherent.

Proof. Recall that S(a, b, c) from Definition III.1 is a degenerate Sklyanin algebra

when

[a ∶ b ∶ c] ∈ {[0 ∶ 0 ∶ 1], [0 ∶ 1 ∶ 0], [1 ∶ 0 ∶ 0]} ∪ {[a ∶ b ∶ c] � a3 = b3 = c3 = 1}.
In the first three cases, S is a monomial algebra defined by finitely many homogeneous

relations. Thus by [Pio96], we have the result for these cases.
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Now assume that a3 = b3 = c3 = 1. Since S(a, b, c) ≅ S �1, b
a ,

c
a
�, we take a = 1

without loss of generality. Furthermore recall from Proposition III.7 that

S(1, b, c) ≅ k{x, y}[z;↵, �](⌦)
where ⌦ is a normal element of k{x, y}[z;↵, �]. Now by Lemma III.49, it su�ces to

show that k{x, y}[z;↵, �] is (left) graded coherent.

Let A ∶= k{x, y}[z;↵, �], let I = AxA +AyA, and B ∶= k[z]. Note that B is left

noetherian. Moreover as

zx = −bxz − cy2 and zy = −b2yz − b2cx2,

one sees I = xA + yA which is free as a right A-module. Therefore A is left graded

coherent due to Lemma III.50. A similar argument also yields right coherence.

To illustrate further consequences, we refer to [Lam99, 4F-4H] for results about

the flatness of modules over Sdeg. In particular, we have the following result of Chase.

Theorem III.56. [Cha60, Theorem 2.1] A ring A is left coherent if and only if the

direct product of any family of flat right A-modules is flat.

One may compare this to a result of Papp and Bass: A ring A is left noetherian

if and only if the direct sum of any family of injective left A-modules is injective

[GW04, Theorem 5.23].

We also point out that there is work in progress with S. Paul Smith in realizing

the category Sdeg-qgr as equivalent to a module category over a direct limit of finite-

dimensional algebras [SW].
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Definition IV.2. For i = 1,2,3, let a, b, c, di, ei be scalars in k with [a ∶ b ∶ c] ∉ D
(Definition IV.1). The deformed Sklyanin algebras, Sdef , are generated by three

noncommuting variables x, y,z, subject to three relations:

ayz + bzy + cx2 + d
1

x + e
1

= 0
azx + bxz + cy2 + d

2

y + e
2

= 0
axy + byx + cz2 + d

3

z + e
3

= 0.
In fact the name is motivated by the observation that, for (almost all) parameters

(a, b, c), the ring Sdef is a PBW-deformation is Skly
3

[BT07][EG, 3].

As we will explain in 4.2, the study of of the representation theory of Sdef falls into

two tasks, one of which is such a study for Skly
3

. Hence the last section of this chapter

is dedicated to the classification of irreducible finite-dimensional representations of

three-dimensional Sklyanin algebras.

4.1 Physical Motivation

Here we discuss the physical motivation behind the task of classifying simple

finite-dimensional Sdef -modules. In particular we point out connections to work

of Berenstein, Jejjala, and Leigh in the field of supersymmetric string theory. To

introduce string theory in general, we use Zwiebach’s description of the investigation

of open strings in a system of M D-branes [Zwi09, 1.3, 15.5].

“Just as the strings of a violin are held stretched by pegs, the D-branes

hold fixed the endpoints of the open strings whose lowest vibrational modes

could represent the particles of the Standard Model.”

Furthermore, we see that the interaction of open strings in the ‘world’ of M D-branes

is in accordance with a certain Yang-Mills theory:
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“On the world volume of M coincident D-branes, there are U(M) gauge
fields [...] whose low energy dynamics is governed by a Yang-Mills theory

with gauge group U(M).”
Now the work in this chapter is prompted by the article [BJL00], in which the

authors study various deformations of a super Yang-Mills theory with gauge group

U(M). More precisely the vacua, or solutions of F-term constraints, of these de-

formed theories are desired. Algebraically, this boils down to finding M ×M matrix

solutions to cyclic derivatives of a superpotential.

Definition IV.3. [EG, 3.1] Let V be a k-vector space with basis x
1

, . . . , xn and

let F = T (V ) = k{x
1

, . . . , xn} be the corresponding free algebra. The commutator

quotient space Fcyc = F �[F,F ] is a k-vector space with the natural basis formed by

cyclic words in the alphabet x
1

, . . . , xn. Elements of Fcyc are referred to as super-

potentials (or as potentials in some articles).

Let � = �{i1,i2,...,ir}⊂I xi1xi2�xi
r

∈ Fcyc for some indexing set I. For each j = 1, . . . , n,
one defines @j� ∈ F , the corresponding partial derivative of � given by:

@j� = �{s�i
s

=j}xi
s

+1xi
s

+2�xi
r

xi1xi2�xi
s

−1 ∈ F.
The elements @j� are called cyclic derivatives of �.

The algebra F � (@j�)j=1,...,n is called a superpotential algebra.

Example IV.4. Consider F = k{x, y, z} with the superpotential � = xyz − xzy. We

get that

@x� = yz − zy, @y� = zx − xz, @z� = xy − yx.
Hence the polynomial algebra k[x, y, z] arises as the superpotential algebra F �(@�).

We return to string theory with the following remark.
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Remark IV.5. The superpotential relevant to the work of Berenstein et al. (after

rescaling parameters) is � = �marg +�rel where:

�marg = axyz + byxz + c
3

(x3 + y3 + z3),
�rel = d1

2

x2 + d2
2

(y2 + z2) + (e
1

x + e
2

y + e
3

z).
Here the two superpotentials respectively correspond to themoduli spaces of marginal

and relevant deformations of a N=4 super Yang-Mills theory.

Observe that if [a ∶ b ∶ c] �∈ D, then the corresponding superpotential algebra is

precisely a deformed Sklyanin algebra with parameters d
2

= d
3

. Hence the classi-

fication of M -dimensional representations of Sdef , or more specifically the study of

simple finite-dimensional Sdef -modules, has physical implications.

4.2 Strategy to classify simple finite-dimensional modules over Sdef

Let us consider the following notation.

Notation. Given an algebra A, let Repr<∞(A) be the set of isomorphism classes of

finite-dimensional left A-modules and Reprm(A) be the objects of dimension m. We

denote by Simp<∞(A) and Simpm(A), the respective subsets of simple modules.

We then formulate our aim as follows.

Classify the simple finite-dimensional modules over Sdef .

The strategy to achieving the goal is as follows. First, homogenize the relations

of Sdef with a central element w. Then, study the representation theory of the

resulting central extension D of Skly
3

. Reasons for this construction are made clear

in Proposition IV.7 below.

Definition IV.6. For i = 1,2,3, let a, b, c, di, ei be scalars in k with [a ∶ b ∶ c] ∉ D
(Definition IV.1). The central extension D of Skly

3

is generated by three variables
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x, y,z and a central element w, subject to the relations:

ayz + bzy + cx2 + d
1

xw + e
1

w2 = 0
azx + bxz + cy2 + d

2

yw + e
2

w2 = 0
axy + byx + cz2 + d

3

zw + e
3

w2 = 0
xw −wx = yw −wy = zw −wz = 0.

Proposition IV.7. Simple finite-dimensional modules over D(a, b, c, di, ei) are pre-

cisely those over Skly
3

(a, b, c) or over Sdef(a, b, c, di, ei).
In other words, our objective can be reformulated in terms of studying the simple

finite-dimensional modules over the graded algebras Skly
3

and D.

Proof. For one direction, consider the surjection ⇡ ∶ D � D�D(w − �) for � ∈ k. If

� = 0, then D�D(w − �) ≅ Skly
3

. Otherwise we can rescale to assume that � = 1 and

so D�D(w − �) ≅ D�D(w − 1) ≅ Sdef . Let S denote either Skly
3

or Sdef , and let M

be a simple finite-dimensional left S-module. Then we can construct from M a left

D-module with D-action given by d∗m = ⇡(d) ⋅m. This module remains simple and

finite-dimensional.

Conversely, given a simple finite-dimensional left D-module M , we will show that

it belongs to either Simp<∞(Skly3) or Simp<∞(Sdef). Since k[w] embeds into D, we

can consider k[w]M , a finite-dimensional module over the PID, k[w]. Hence k[w]M is

torsion and there exists a nonzero polynomial f(w) in annk[w]M . Now k[w]�(f(w))
embeds in EndDM , a division ring by Schur’s lemma. Thus k[w]�(f(w)) embeds

into a domain, and f(w) is irreducible and of the form w − � where � ∈ k. If � = 0,
then M ∈ Simp<∞(Skly3). Otherwise D�D(w − �) ≅ D�D(w − 1) by rescaling, and

we have that M belongs to Simp<∞(Sdef).
Hence we proceed to study the simple finite-dimensional modules of Skly

3

in the
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next section. Results on the analysis of Simp<∞D is presented in Chapter 5.

4.3 Irreducible finite dimensional representations of Sklyanin algebras

We study irreducible finite-dimensional representations of the three-dimensional

Sklyanin algebra (Definition IV.1), denoted by Skly
3

, S(a, b, c), or S. Before we

begin, we point out that the representation theory of Skly
3

has also physical conse-

quences.

Remark IV.8. We see specifically from Remark IV.5 that the algebra S(a, b, c)
arises as the superpotential algebra, k{x, y, z}�(@�marg). The corresponding marginal

deformed theories are studied in [BJL00, 4.6.1], and in our language, the authors

sought to understand the set Simp<∞S(a, b, c). This task was not achieved.

Recall from 2.1.3 that Skly
3

is associated to the geometric data (E,L,�) where
E = V((abc)(x3 + y3 + z3) − (a3 + b3 + c3)(xyz)) i⊂ P2

k,

L is the invertible sheaf i∗OP2(1) on E, and � is the automorphism of E induced by

the shift functor on point modules of S.

Assumption IV.9. We restrict our attention to the case that E is smooth curve,

to say that the parameters a, b, c of S satisfy abc ≠ 0 with (3abc)3 ≠ (a3 + b3 + c3)3.
Furthermore we assume that � ∈ Aut(E) is given by translation by a point so that our

definition of S(a, b, c) corresponds to the standard definition of a three-dimensional

Sklyanin algebra, i.e. S is a type A Artin-Schelter regular algebra of dimension 3

[ATVdB90, 4.13].

Remark IV.10. Now the sheaf L = i∗OP2(1) on E has degree 3 due to a version

of the Riemann-Roch theorem. Namely if L is any line bundle on an irreducible,
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reduced projective curve C, then

dimkH
0(C,L) − dimkH

1(C,L) = degL + 1 − dimkH
1(C,OC).

We also remind the reader that there exists a central, regular element g, homoge-

neous of degree 3 so that S�Sg is isomorphic to a twisted homogeneous coordinate

ring B = B(E,L,�) (Theorem II.16).

The results of this section are given as follows. The simple 1-dimensional S-

modules are determined in Lemma IV.11. We then consider the order of �, and

investigate Simp<∞S when ��� =∞ (Proposition IV.13), and when ��� <∞ afterward.

For the ��� <∞ case in particular, we also take into consideration the subcases where

simple finite-dimensional S-modules are either g-torsionfree or g-torsion. These re-

sults are reported in Propositions IV.16 and IV.18, respectively.

Recall the terminology from Definition II.31.

Lemma IV.11. The set Simp
1

(S) solely consists of the trivial module: {S�S+}.
Proof. We know that:

Simp
1

(S) =
�����������������������������

S
��→ k

x� ↵

y � �

z � �

∶
a�� + b�� + c↵2 = 0,
a�↵ + b↵� + c�2 = 0,
a↵� + b�↵ + c�2 = 0,
[a ∶ b ∶ c] ∈ P2

k �D

�����������������������������
.

By Assumption IV.9, abc ≠ 0 so let � ∶= −(a+b)�c. Now the conditions on (↵,�,�)
above are equivalent to:

{��� = ↵2, �↵� = �2, �↵� = �2},
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in which we have that (�3 − 1)↵2� = 0. If �3 ≠ 1, then we get that ↵ = � = � = 0 and

Simp
1

(S) = {S�S+}. Else if �3 = 1, then a3 + b3 + c3 = −3ab(a + b). This implies that

(a3 + b3 + c3)3 = (3abc)3, which contradicts Assumption IV.9.

The next result describes Simp<∞S in the case that ��� =∞. First we require the

following lemma.

Lemma IV.12. Let A be a finitely generated, locally finite, connected graded k-

algebra. Take M ∈ Simp<∞A and let P be the largest graded ideal contained in

annA(M). Then we have that GKdim(A�P )= 0 or 1. In particular, GKdim(A�P )=0

if and only if M is the trivial module A�A+.
Proof. Let A ∶= A�P . Note that M ∈ Simp<∞(A) so annA(M) contains no ho-

mogeneous elements. Suppose by way of contradiction that GKdim(A)> 1. Then

by Proposition II.27(5), we have that limi→∞ dimkAi = ∞. Since A�annA(M) is

finite-dimensional by the Density Theorem [MR01, Theorem 0.3.6], we get that

annAM∩Ai ≠ 0 for all i >> 0. Hence there exists a homogeneous element in annA(M),
which contradicts the maximality of P . Now GKdim(A) = 0 or 1 by Proposition

II.27(4).

If M = A�A+, then P = A+, and GKdim(A�P )=0 as A�P is finite-dimensional

(Proposition II.27(3)). Conversely, GKdim(A�P ) = 0 implies that A = A�P is finite-

dimensional and connected graded. Since �
n∈N �A+�n = 0, we get that �A+�n = 0 for

some n ∈ N . Hence A+ = 0 by primality, and so P = A+ with M being the trivial

module.

Proposition IV.13. The set Simp<∞(S) equals {S�S+} when ��� =∞.

Proof. According to Lemma II.32, we have that simple finite dimensional modules

over S are quotients of irreducible objects in S-qgr. For ��� =∞, the set of nontrivial,
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g-torsionfree quotients of S-qgr is empty due to [ATVdB91, Propositions 7.5, 7.9].

On the other hand, the set of g-torsion irreducible objects of S-qgr equals the set

of irreducible objects of B-qgr where B is the twisted homogeneous coordinate ring

B(E,L,�) (Theorem II.16). This is precisely the set of B-point modules (Theorem

II.14). TakeM ∈ Simp<∞B and let P be the largest graded ideal contained in annBM .

By Lemma IV.12, we have that GKdim(B�P )≤ 1. If equal to 1, then Kdim(B�P )=1,

which is a contradiction as ��� =∞ and B is projectively simple in this case [RRZ06].

Thus GKdim(B�P )=0, and again by Lemma IV.12 we know that M = B�B+.
We now determine the dimensions of simple finite-dimensional left S-modules in

terms of the PI degree of S. We require the following preliminary result.

Notation. Let g denote the central homogeneous degree 3 element of S such that

S�Sg ≅ B (Theorem II.16). Put ⇤ ∶= S[g−1]. We have that S is module finite over

its center precisely when ��� = n <∞ (Theorem I.18). Thus S is PI and let p denote

the PI degree of S in this case.

Note that the result below is mentioned in [LB95a, 3], yet the details are omitted.

We provide the full proof here.

Lemma IV.14. In the case of ��� <∞, the PIdeg(⇤
0

) equals p�d where d =gcd(3, ���).
Proof. The center of S, denoted by Z(S), has four generators: g of degree 3 and

three others of degree ��� [ST94, Theorem 3.7]. Let u be any one of the degree ���
elements.

In the case of d = 1, recall that ⇤ ∶= S[g−1] and consider the following notation:

⇤′
0

∶= ⇤
0

[g±1], ⇤′′
0

∶= ⇤′
0

[u±1], ⇤′ ∶= ⇤[u±1].
Note that

⇤
0

⊆ ⇤′
0

⊆ ⇤′′
0

⊆ ⇤′.
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Adjoining a central element does not alter PI degree so we have that:

( ) PIdeg(⇤
0

) = PIdeg(⇤′
0

) = PIdeg(⇤′′
0

);

( ) PIdeg(⇤′) = PIdeg(S) =: p.

We now show that ⇤′′
0

= ⇤′. Take a ∈ ⇤′ of degree m ∈ Z. Then there exists m
1

∈ Z≥0
so that aum1 ∈ ⇤. As gcd(3,deg(u)) = 1, we have that aum1+m2 ∈ ⇤

3Z for m
2

= 0, 1, or

2. Now aum1+m2g−t ∈ ⇤
0

for some t ∈ Z≥0. Thus a = (aum1+m2g−t)(u−(m1+m2)gt) ∈ ⇤′′
0

.

Thus with ( , ) above, we conclude that:

PIdeg(⇤
0

) = PIdeg(⇤′′
0

) = PIdeg(⇤′) = p

as desired.

On the other hand, for d = 3 we show that:

p
3

= PIdeg(S
3Z) = PIdeg(⇤

0

).

The second equality follows from two observations:

(∗) ⇤
0

= {sg−m ∶ m ∈ Z, s ∈ S
3m} = S3Z[g−1]0,

(∗∗) S
3Z[g−1] = {sg−m ∶ s ∈ S3d; d,m ∈ Z} = S3Z[g−1]0[g±1].

Now we have that:

PIdeg(S
3Z)

(∗∗)= PIdeg(S
3Z[g−1]0[g±1]) = PIdeg(S

3Z[g−1]0) (∗)= PIdeg(⇤
0

).

It su�ces to show p = 3⋅PIdeg(S
3Z) on the level of fraction fields, i.e. we must

show that PIdeg(FS) = 3(PIdeg(FS
3Z)) for F = Frac(Z(S)) = Z(S)[C−1] with

C = Z(S) � {0}. We also note that

F ⊆ FS
3Z = S3Z[C−1] ⊆ FS = S[C−1].

Since S and S
3Z are domains, by Posner’s theorem (Theorem II.42) we have that

FS
3Z and FS are division rings. Let r denote the PIdegree of FS

3Z. By Posner’s
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theorem and [MR01, Lemma 13.3.4], we know that there exists a maximal subfield K

of FS
3Z so that dimK(FS

3Z) = r. Since dimS3Z S = 3, we have that dimK(FS) = 3r.
Using the regular representation,

FS � EndK(KFS) ≅Mat
3r(K),

we get that PIdeg(FS)≤ 3r.
For the other inequality, pick a maximal subfield L of FS containing K. Then

3r = dimK FS = (dimK L)(dimLFS) = (dimK L)(PIdegFS).
The last equality is again due to Posner’s theorem and [MR01, Lemma 13.3.4]. There-

fore, PIdeg(FS) divides 3r.

Since the degree of central elements of Z(S) are in 3Z, then

F = Z(S)[C−1] ⊆ Z(FS
3Z) = Z(S3Z[C−1]).

Now we know that

(dimF FS
3Z)1�2 ≥ (dimZ(FS3Z)FS

3Z)1�2 = PIdegFS
3Z.

Therefore

31�2(PIdegFS
3Z) ≤ (dimF FS

3Z)1�2 ⋅ 31�2
= (dimF FS

3Z)1�2(dimFS3Z FS)1�2
= PIdegFS.

In other words, 31�2 ⋅ r ≤ PIdegFS. Since PIdegFS divides 3r and PIdegFS > r, we
have that PIdegFS = 3r. Thus

PIdegS = PIdegFS = 3 ⋅ (PIdegFS
3Z) = 3 ⋅ (PIdegS

3Z),
and PIdegS = 3⋅PIdeg⇤

0

in the case of (3, ���) ≠ 1.
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Corollary IV.15. In this case ��� < ∞, we have that the PI degree of S(a, b, c) is
equal to ��abc�.
Proof. Let s denote the smallest integer such that �s fixes [L] in PicE. We know

by [ATVdB91, Theorem 7.3] that the ring ⇤
0

is Azumaya (Definition II.46) and s is

its PI degree. Now suppose that (3, ���) = 1. Then s = ��� by [Art92, 5]. Therefore

with Lemma IV.14, we have that PIdeg S = PIdeg ⇤
0

= s = ���.
On the other hand, suppose that ��� is divisible by 3. We have that s is also

the order of the automorphism ⌘ introduced in [ATVdB91, 5], due to [ATVdB91,

Theorem 7.3] (or more explicitly by [AdJ, Lemma 5.5.5(i)]). Since L has degree 3

(Remark IV.10), we know that ⌘ is �3 [AdJ, Lemma 5.3.6]. Thus

PIdeg S = 3 ⋅PIdeg ⇤
0

= 3s = 3�⌘� = 3��3� = 3 ⋅ ���(3, ���) = ���.
Now we consider two subcases of the classification of Simp<∞S for ��� < ∞: first

consisting of g-torsionfree modules in Proposition IV.16, and secondly consisting of

g-torsion modules in Proposition IV.18.

Proposition IV.16. Take ��� < ∞, and let M be a g-torsionfree simple finite-

dimensional left S-module. Then we have that dimkM = p for (3, ���) = 1, and

p�3 ≤ dimkM ≤ p for ��� divisible by 3.

Proof. Let M be a g-torsionfree simple S-module of dimension m < ∞. By Lemma

II.32 and Remark II.33, M is the quotient of some 1-critical graded S-module N

with mult(N) ≤ m. Note that N is an irreducible object in S-qgr, which is also

g-torsionfree. The equivalence of categories, Irred(S − qgr)
g−torsionfree ∼ Simp<∞(⇤0

), from

[ATVdB91, Theorem 7.5] implies that N yields the object N[g−1]
0

in Simp∞(⇤0

).
Furthermore we have that dimkN[g−1]0 =mult(N) as follows.
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SinceN is 1-critical, by Remark II.23 and Definition II.24 we know that dimk(Nj) =
mult(N) for j >> 0. Recall that g is homogeneous of degree 3. Note that N[g−1]

0

⋅gi ⊆
N

3i and moreover that dimk(N3i) = mult(N) for i >> 0. Hence such an i, we have

that:

dimkN[g−1]0 = dimk(N[g−1]0 ⋅ gi) ≤ dimkN3i = mult(N).
Conversely N

3i ⋅ g−i ⊆ N[g−1]0. Hence for i >> 0 we have that:

mult(N) = dimk(N3i) = dimk(N3i ⋅ g−i) ≤ dimkN[g−1]0.
Thus dimkN[g−1]0 =mult(N) as desired.

Since ⇤
0

is Azumaya, the ⇤
0

-module N[g−1]
0

has dimension equal to PIdeg(⇤
0

)

(Theorem II.51). Therefore PIdeg(⇤
0

) = mult(N) ≤m. On the other hand, we know

by Proposition II.52 that m ≤ p. Hence
PIdeg(⇤

0

) ≤ dimkM ≤ p.

In the case of (3, ���) = 1, Lemma IV.14 implies that PIdeg⇤
0

= p. Thus dimkM =
p in this case. For ��� divisible by 3, we can conclude from Lemma IV.14 that

p�3 ≤ dimkM ≤ p.
Corollary IV.17. In the case of ��� < ∞, a generic finite-dimensional simple, g-

torsionfree, left S-module M has dimension equal to ���.
Proof. We have an inclusion of sets Simp<∞S

g−torsionfree ⊂ Simp<∞S[g−1] given by M �M[g−1],
whereM[g−1] remains simple by [GW04, Corollary 10.16] and dimkM[g−1] = dimkM

by [GW04, Exercise 10K]. Since inverting central elements does not alter PI degree,

we have that PIdeg(S[g−1]) = PIdeg(S). Now we can conclude the result by applying

Corollary IV.15 and Propositions II.52, II.54.
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To study g-torsion S-modules, let us consider the following notation.

Notation. Recall that S�Sg is isomorphic to a twisted homogeneous coordinate ring

B (Theorem II.16). Since B is a homomorphic image of S which is PI for ��� < ∞,

we have that B is also PI in this case. Let q denote the PI degree of B.

Proposition IV.18. For the case of ��� = n < ∞, let M be a non-trivial g-torsion

simple finite-dimensional left S-module. Then dimkM = q.
Proof. For a graded ring A = �i∈NAi, let Simpo<∞A denote the set of simple finite-

dimensional left A-modules that are not annihilated by the irrelevant ideal A+ =
�
i≥1 Ai. Notice that

Simp<∞S
g−torsion = Simp<∞B.

Thus it su�ces to show that all modules in Simpo<∞B have maximal dimension, which

is equal to q by Proposition II.52. We proceed by establishing the following claims.

Claim 1: We can reduce the task to studying Simpo<∞B for B some factor of B. Fur-

thermore Simpo<∞B = Simpo<∞C for C = B(Yn,L�Y
n

,��Y
n

), the twisted homogeneous

coordinate ring of an irreducible ���-orbit of E.

Claim 2: The ring C is isomorphic to a graded matrix ring.

Claim 3: The modules of Simpo<∞C all have maximal dimension which is equal to

PIdeg(C) = ���.
Proof of Claim 1: TakeM ∈ Simpo<∞B and let P be the largest graded ideal contained

in annBM . Note that P is a prime ideal as follows. If not, then there exists graded

ideals I, J strictly containing P , with IJ ⊆ P . Now IJM = 0, yet JM ≠ 0. Hence

by the simplicity of M , we know that JM = M . So IM = 0, which prompts a

contradiction. Set B = B�P .
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We have by Lemma IV.12 that GKdim(B)=1, so Kdim(B) = 1 [MR01, 8.3.18].

We also have by [AS95, Lemma 4.4] that the height one prime P of B corresponds

to an �-irreducible maximal closed subset of E. Namely as � is given by translation,

P is associated to a �-orbit of ��� points of E, an orbit denoted by Yn. Here n ∶= ���.
Now by [BRS10, proof of Proposition 3.8(1)], we have a natural homomorphism:

� ∶ B �→ B(Yn,L�Y
n

,��Y
n

) =∶ C
given by restrictions of sections, with ker(�) = P . The map � is also surjective in

high degree, whence B is isomorphic to C in high degree.

Since B and C are PI, we have by Kaplansky’s theorem [MR01, Theorem 13.3.8]

that for each of these rings: the maximal spectrum equals the primitive spectrum.

Thus it su�ces to verify the following subclaim.

Subclaim: For a graded k-algebra A =�i≥0Ai, let maxoA denote the set of maximal

ideals of A not containing the irrelevant ideal A+. Then there is a bijective correspon-

dence between maxoC and maxoB, given by I � B ∩ I. Moreover B�(B ∩ I) ≅ C�I.
Proof of Subclaim: We know that B≥m = C≥m for m >> 0. Therefore as B is generated

in degree 1, for any such m:

J ∶= (B+)m = B≥m = C≥m ⊇ (C+)m,
is a common ideal of B and C. (The last inclusion may be strict as C need not be

generated in degree 1.)

For one inclusion, let I ∈ maxoC. We want to show that B ∩ I ∈ maxoB. Note

that B�(B ∩ I) ≅ (B + I)�I as rings. Furthermore

C ⊇ B + I ⊇ J + I ⊇ (C+)m + I = C.
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The last equality is due to C+ and I being comaximal in C. Hence C = B + I and

B�(B ∩ I) ≅ C�I is a simple ring. Consequently B ∩ I ∈maxoB.

Conversely, take M ∈ maxoB and we want to show that M = B ∩ Q for some

Q ∈maxoC. We show that CMC ≠ C. Suppose not, then

(B+)2m = J2 = JCJ = JCMCJ = JMJ ⊆M,

which implies that B+ ⊆ M as M is prime. This is a contradiction. Now CMC

is contained in some maximal ideal Q of C. Since M ∈ maxoB, we have that Q ∈
maxoC; else M ⊆ Q ∩B = B+. By the last paragraph, we know that B ∩Q ∈maxoB

with B ∩Q =M ∈maxB.

Thus Claim 1 is verified and so it su�ces to examine Simpo<∞C.

Proof of Claim 2: Recall that n ∶= ���. We will show that C is isomorphic to the

graded matrix ring:

R ∶=
�����������������

T xn−1T xn−2T . . . xT

xT T xn−1T . . . x2T

x2T xT T . . . x3T

⋮ ⋮ ⋮ � ⋮
xn−1T xn−2T xn−3T . . . T

�����������������
with T = k[xn]. Say Yn ∶= {p1, . . . , pn}, the ���-orbit of n distinct points pi. Let

L′ ∶= L�Y
n

and �′ ∶= ��Y
n

. Reorder the {pi} to assume that �′(pi) = pi+1 and �′(pn) = p1
for 1 ≤ i ≤ n − 1. Now by Definition II.9, C =�

d≥0H0(Yn,L′d) where L′
0

= n�
i=1 Op

i

, and

L′
1

= n�
i=1 Op

i

(1), and
L′d = L′ ⊗O

Y

n

(L′)�′ ⊗O
Y

n

. . .⊗O
Y

n

(L′)�′d−1 .
Note that

(L′)� = Op
n

(1)⊕Op1(1)⊕ ⋅ ⋅ ⋅ ⊕Op
n−1(1) ≅ L′.
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Therefore L′d ≅ (L′)⊗d. If i = j, then Op
i

(1) ⊗Op
j

(1) ≅ Op
i

(2). Otherwise the sheaf

Op
i

(1) ⊗ Op
j

(1) has empty support. Hence (L′)⊗d ≅ n�
i=1 Op

i

(d). So C shares the

same k-vector space structure as a sum of n polynomial rings in one variable, say

k[u
1

]⊕ ⋅ ⋅ ⋅ ⊕ k[un].
We next study the multiplication of C; write Ci as k ⋅ ui

1

⊕ ⋅ ⋅ ⋅ ⊕ k ⋅ ui
n. We define

the multiplication Ci × Cj → Ci+j on basis elements (uk
1

, . . . , uk
n) for k = i, j, which

will extend to C by linearity. Moreover all of the following sums in indices are taken

modulo n.

Observe that

Ci ×Cj =H0(Yn,L′i)⊗H0(Yn,L′j)=H0(Yn,L′i)⊗H0(Yn, (L′j)(�′)i).
Recall the multiplicative structure of twisted homogeneous coordinate rings (Defini-

tion II.9). Hence the multiplication C is defined as

(ui
1

, . . . , ui
n) ∗ (uj

1

, . . . , uj
n) = (ui

1

uj
1−i, . . . , ui

nu
j
n−i).

We now show that C is isomorphic to the graded matrix ring R. Define a map

� ∶ C → R by

(ui
1

, . . . , ui
n)�

���������
Row(ui

1

)
⋮

Row(ui
n)
���������
=∶ Mi.

Here Row(ui
l) denotes the row with the entry ui

l in column l−imodulo n, and zeros

entries elsewhere. In other words, the matrix Mi has a degree i entry in positions

(l, l − i) for l = 1, . . . , n and zeros elsewhere. We see that Mi ∈ R.
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The map � is the ring homomorphism as follows. First note that

�((ui
1

, . . . , ui
n) ∗ (uj

1

, . . . , uj
n)) = �((ui

1

uj
1−i, . . . , ui

nu
j
n−i)) =

���������
Row(ui

1

uj
1−i)⋮

Row(ui
nu

j
n−i)
���������
.

Here the entry ui
lu

j
l−i appears in positions (l, l − (i + j)) for l = 1, . . . , n.

On the other hand,

�((ui
1

, . . . , ui
n)) ⋅ �((uj

1

, . . . , uj
n)) =

���������
Row(ui

1

)
⋮

Row(ui
n)
���������
⋅
���������

Row(uj
1

)
⋮

Row(uj
n)
���������
=∶ Mi ⋅ Mj.

The nonzero entries of Mi, namely ui
l, appear in positions (l, l − i) for l = 1, . . . , n,

whereas the nonzero entries of Mj, the u
j
l , are in positions (l, l−j) = (l−i, l−(i+j)) for

l, i = 1, . . . , n. Therefore the product Mi⋅Mj has nonzero entries in positions (l, l−(i+j))
and these entries are ui

lu
j
l−i for l = 1, . . . , n. Thus we have a ring homomorphism �

between C and R which is clearly bijective. This concludes the proof of Claim 2.

Proof of Claim 3: We aim to show that M ∈ Simpo<∞R has maximal k-vector space

dimension, which is equal to n. Let s denote the diagonal matrix, diag(xn) in R,

and note that sR = R+. Consider the ring R[s−1]. For M ∈ Simpo<∞R, construct

the module 0 ≠M[s−1] = R[s−1] ⊗R M ∈ R[s−1]-mod. Since M is simple, M[s−1] is
also simple by [GW04, Corollary 10.16]. Furthermore dimkM[s−1] = dimkM as M

is s-torsionfree [GW04, Exercise 10K]. Thus we have an inclusion of sets Simpo<∞R ⊆
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Simp<∞R[s−1] given by M �M[s−1]. Now observe that:

R[s−1] =
�������������

T ′ xn−1T ′ xT ′
xT ′ T ′ x2T ′
⋮ ⋮ � ⋮

xn−1T ′ xn−2T ′ T ′

�������������
for T ′ = k[(xn)±1]. So R[s−1] ⊆ Matn(T ′) as rings, to say the rings have the same

multiplicative structure. The rings are also equal as sets. Hence R[s−1] = Matn(T ′)
as rings. Since all simple modules of Matn(T ′) have dimension n, we have now

verified Claim 3.

Thus we conclude the proof of the proposition.

Corollary IV.19. Given a three-dimensional Sklyanin algebra S(a, b, c) where
��abc� <∞ with S�Sg ≅ B, we have that PIdeg(S) = PIdeg(B) = ���.
Proof. In the proof of the preceding proposition, we have that ��� is equal to the

maximal dimension of the simple finite-dimensional modules of the rings R and

C. Since simple finite-dimensional modules of R and C correspond to modules

in Simpo<∞B with the same dimension by Claim 1, we have that ��� = PIdeg(B)

(Proposition II.52). Moreover PIdeg(S) = ��� by Corollary IV.15.

Corollary IV.20. (We remind the reader that we have restricted our attention to

E smooth.) The smooth locus and Azumaya locus of B coincide when ��� <∞.

Proof. By [ST94, Corollary 2.8], the center of B is equal to the twisted homogeneous

coordinate ring associated to the triple (E′,L�E′ ,��E′) where E′ = E<�> , which is also

a smooth elliptic curve. Hence maxZ(B) is the a�ne cone over E′ ⊆ P2, and so

the smooth locus of maxZ(B) is equal to maxZ(B) � {0}. This set is precisely the

Azumaya locus as proved in Proposition IV.18.



CHAPTER V

Representation theory of deformed Sklyanin algebras II:
On the central extension D of Skly3

Recall from Chapter 4 that our main objective is to classify irreducible finite-

dimensional representations of the deformed Sklyanin algebra Sdef (Definition IV.2),

a task which has implications in string theory (see 4.1). This problem boils down

to studying such modules over the three-dimensional Sklyanin algebra Skly
3

(Def-

inition IV.1), and over the central extension D of Skly
3

. We are only able to give

partial results towards this classification, and these are collected in this chapter. For

instance, we are able to determine the 1-dimensional representations of D (Lemmas

V.5 and V.6). For the reader’s convenience, we restate the definition of D below.

Definition V.1. For i = 1,2,3, let a, b, c, di, ei be scalars in k with [a ∶ b ∶ c] ∉ D
(Definition IV.1). The central extension D of Skly

3

is generated by three variables

x, y,z and a central element w, subject to the relations:

ayz + bzy + cx2 + d
1

xw + e
1

w2 = 0
azx + bxz + cy2 + d

2

yw + e
2

w2 = 0
axy + byx + cz2 + d

3

zw + e
3

w2 = 0
xw −wx = yw −wy = zw −wz = 0.

Notation. Let Simp<∞A denote the set of isomorphism classes of simple finite-

dimensional left A-modules, and let SimpmA denote those of dimension m.

113
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Now the set Simp<∞Skly3 was investigated in Chapter 4 and hence this chapter

is dedicated to the study of Simp<∞D.

In the first section, we present results on the noncommutative geometry of D and

we also describe the set Simp
1

D in terms of D-point modules. In certain cases (of

physical significance), we provide the explicit descriptions of Simp
1

D and Simp
1

Sdef .

The last two sections discuss partial results in determining the center ofD and the fat

point modules over D, with a view towards classifying higher dimensional irreducible

representations of D. These techniques are motivated by the work of [LB95b, SS93]

and their analysis of conformal sl
2

enveloping algebras and four-dimensional Sklyanin

algebras respectively.

5.1 Background on the geometry of D, and computation of Simp
1

D

Fortunately much is known about the noncommutative geometry of D, to say its

point scheme and line scheme (Definition II.19) are known, and we present these

results below. As a consequence, we can describe the 1-dimensional representations

of D in terms of D-point modules.

To describe the geometric data of D, we remind the reader of the constructions

of a point scheme with automorphism � induced by the shift functor and of a line

scheme (Definitions II.19, II.8). Recall in particular that the point scheme of Skly
3

is generically an elliptic curve E ⊆ P2 (Proposition II.15). In fact, we make the

following assumption.

Assumption V.2. Let us restrict our attention to the case that the point scheme

of Skly
3

is smooth, i.e. E = P2 or a smooth cubic curve. In the case that E is a

smooth curve, we invoke Assumption IV.9 from Chapter 4.

Proposition V.3. [LBSVdB96, Theorem 4.1.11, Theorem 4.2.2(2), Proposition
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4.3.7] Let D be a central extension of a generic three-dimensional Sklyanin algebra

as in Definition V.1.

1. Point modules M(p) of D corresponding to p ∈ PD are the form of

D�Dy
1

+ Dy
2

+ Dy
3

where yi ∈ D
1

. We also have that the point p ∈ PD is

V(y
1

, y
2

, y
3

) ⊆ P3.

2. The point scheme of D, denoted PD, is the union of E and a set of r points S =
{si}ri=1. In fact, r = 8 for generic central extensions D of Skly

3

and this is the

maximum cardinality of S. Here E ⊆ V(w) = P2 ⊆ P3[x∶y∶z∶w] and S ⊆ P3 �V(w).
3. The automorphism �D of PD, induced by the shift functor on point modules of

D, is given by � on E and the identity on S.
Observe that by the last part of this result, we get that ��D� = ���.
Proposition V.4. [LBSVdB96, Example 5.2.5] The line scheme of D lies in P3[x∶y∶z∶w]
and is the union of the line scheme of Skly

3

and two lines passing through p for each

point p ∈ E ⊆ V(w) ⊆ P2.

We will use the line scheme later to understand fat point modules of D. On

the other hand, since we understand point modules over D, we can now study the

1-dimensional representations of D and those of Sdef .

Lemma V.5. Let D be a central extension of a three-dimensional Sklyanin algebra.

Then the simple 1-dimensional D-modules arise as simple quotients of point modules

over D.

Proof. By Lemma II.32, a simple 1-dimensional D-module M is the quotient of some

1-critical graded D-module N . Moreover by Remark II.33, mult(N) ≤ dimkM=1, so

mult(N)=1. Thus simple 1-dimensional D-modules are quotients of D-point mod-

ules.
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Before we continue to study the sets Simp
1

D and Simp
1

Sdef , we point out spe-

cific algebras, D and Sdef , that are of physical importance, namely relevant to

[BJL00, 4]. The authors in this work study q-deformed theories or rather the set

Simp<∞Sdef(a, b, c, di, ei) with the parameter c = 0. They also focus on the theories

equipped with either: (i) a single mass term; (ii) a mass term and a linear term; (iii)

three arbitrary linear terms; or (iv) three arbitrary mass terms. In our language,

this is equivalent to classifying Simp<∞Sdef with the respective conditions that:

(i) d
1

is arbitrary, d
2

= d
3

= ei = 0;
(ii) d

1

, e
1

are arbitrary, d
2

= d
3

= e
2

= e
3

= 0;
(iii) di = 0, or;
(iv) ei = 0.
Thus we describe the 1-dimensional representations of Sdef for each of the cases:

di = 0, ei = 0, and d
2

= d
3

= e
2

= e
3

= 0.
Lemma V.6. For each of the cases di = 0, ei = 0, and d

2

= d
3

= e
2

= e
3

= 0, the 1-

dimensional representations of Sdef(a, b, c, di, ei) can be explicitly described. In fact,

there is one such representation if di = 0, five representations if ei = 0, and three

representations if d
2

= d
3

= e
2

= e
3

= 0.
Proof. See Routine A.4.

Now we compare these 1-dimensional representations of Sdef with the following

results on point modules of D.

Proposition V.7. Let D be a central extension of a generic Sklyanin algebra. Then

the non-trivial simple 1-dimensional modules over Sdef are simple quotients of the

point modules

{M(si) � si ∈ S} = � D

Dy
1

+Dy
2

+Dy
3

� V(y
1

, y
2

, y
3

) = si ∈ PD� .
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The set S = {si} is explicitly described in the appendix for the cases: di = 0, ei = 0,
and d

2

= d
3

= e
2

= e
3

= 0. In fact for these cases, S consists of 1 point, 5 points, and

3 points respectively.

Proof. By Lemma IV.7, we know that Simp
1

Sdef = Simp
1

D � Simp
1

Skly
3

. Hence

by Lemma IV.11, we have that Simp
1

Sdef = Simp
1

D � {D�D+}.
For generic D, we know that ��D� = ��� = ∞, and so the point modules M(p) for

p ∈ E only yield trivial simple quotients [LS93, Lemma 5.8(d)]. Thus the nontrivial

simple 1-dimensional Sdef -modules are simple quotients of the point modules M(si)
for si ∈ S.

Given the parameters di = 0, ei = 0, or d2 = d3 = e2 = e3 = 0, refer to Routine A.5

for the computation of (the point scheme PD, and particularly) the set S.
5.2 On the computation of Simp>1D

Since we studied 1-dimensional representations of D (and of Sdef ) in the previous

section, we now analyze simple D-modules of higher dimension. We are not able

to provide classification results in general, but we proceed by listing partial results

towards this goal. We begin with the following result.

Lemma V.8. If M ∈ Simp<∞D arises as a simple quotient of a fat point module,

then dimkM > 1.
Proof. Apply Remark II.33.

In fact for generic D, we would like to establish the nonexistence of D-fat point

modules.

On the other hand for certain D, namely some for which ��D� = ��� <∞, we aim to

verify that D is module-finite over its center. In this case, D would have many higher
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dimensional representations, particularly many of which have dimension equal to the

PI degree of D. This is due to the Azumaya locus of D (Definition II.53) being dense

in maxZ(D) (Propositions II.52, II.54). This leads us to the following claim.

Conjecture V.9. A central extension D of Skly
3

is either PI or all simple finite-

dimensional D-modules are 1-dimensional.

In 5.3, we discuss results on the center of D. We show that for generic D

(for ��� =∞), the center of D is generated by the central element w and a homoge-

neous degree 3 element ĝ
3

(Proposition V.10). Moreover D is not PI in this case.

We also investigate the center of D when ��� <∞, in which we conjectured that D is

PI if ��� = 3,6 and not PI if ��� = 1,2 (Conjectures V.12, V.13, V.15, Remark V.16).

The final section, 5.4, is dedicated to the study of fat point modules of D for the

reasons mentioned above. We aim to present fat point modules of D as quotients of

line modules of D by shifted line modules of D, a strategy prompted by the methods

in [LB95b] and [SS93]. We show that this presentation of D-fat point modules holds

in the case that ��� = 2 (Proposition V.29). We then aim to employ the geometry of

line modules to draw conclusions about either the existence or structure of fat point

modules. Partial results are reported below.

5.3 On the center of D

In this section we discuss the center of D and whether D satisfies a polynomial

identity. Recall from the definition of D that D has one central element w of degree

1. For generic D (with ��D� = ��� =∞), we also have another central element ĝ
3

ho-

mogeneous of degree 3. This element is computed with the noncommutative algebra

package A�ne of the computer algebra system Maxima, and it is also presented in

[EG, 9]. Here we assume (by rescaling) that the parameter a of D is equal to 1:
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(5.1)

ĝ
3

= c(c3 − b3)y3 + b(c3 − 1)yxz + (b3 − c3)xyz + c(1 − c3)x3

+(−c2d
1

)wyz
+[(−b4d

2

+ b3d
2

− b2d
2

+ 2bc3d
2

− c3d
2

)�(b − 1)]wy2
+[(−b3d

3

+ bc3d
3

)�(−c(b − 1))]wyx
+(bc2d

2

)wxz
+[(−b2d

3

+ bc3d
3

)�(−c(b − 1))]wxy
+[(−b2d

1

− bc3d
1

+ bd
1

+ 2c3d
1

− d
1

)�(b − 1)]wx2

+[(−b3ce
3

+ 2b2ce
3

− b2d2
3

+ bc2d
1

d
2

− bce
3

�(−c(b − 1))]w2z

+[(−b4e
2

+ 2b3e
2

− 2b2e
2

+ bc3e
2

+ bc2d2
2

− bcd
1

d
3

+ be
2

− c3e
2

)�(b − 1)]w2y

+[(b3e
1

+ 2b2e
1

− bc3e
1

− bcd
2

d
3

+ 2be
1

+ c3e
1

+ c2d2
1

− e
1

)�(b − 1)]w2x.

Considering the surjection D � D�Dw ≅ Skly
3

, we have that the image of ĝ
3

is

the element g from Remark II.17. With this observation, we now show that ĝ
3

and

w generate the center of D in the case where ��� =∞.

Proposition V.10. Given a central extension D of Skly
3

for which ��� = ∞, we

have that Z(D) = k[w, ĝ
3

]. In this case, D is not PI.

Proof. Let C be the graded subalgebra of Z(D) generated by ĝ
3

. Consider the

surjection ⇡ ∶ D � D�Dw = Skly
3

. Since ⇡(C) = k[g], and Z(S) = k[g] for ��� = ∞
[Smi94, 13], we have by [ST94, Lemma 3.6] that Z(D) = k[ĝ

3

, w].
Furthermore S is not PI as ��� =∞ (Theorem I.18). So by considering the homo-

morphism ⇡ above, we have that D is also not PI (Proposition II.38).

Hence according to Conjecture V.9, we claim that Simp<∞D = Simp
1

D for ��� =∞.

This problem is addressed in the next section.
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Now we study the center of D when ��D� = ��� < ∞. The task of finding such D

is equivalent to classifying parameters (a, b, c) for which � = �abc has finite order.

Here, by rescaling parameters, we assume that a = 1. Partial results on this problem

are reported in Proposition A.1 in the appendix. In fact for n = 1, . . . ,6, we know

the parameters (a, b, c) for which � = �abc has order n. Hence we study the central

extensions D of S(a, b, c) where ��abc� = 1, . . . ,6.
Case: ��� = 1

First, we have that ��� = 1 if and only if Skly
3

is the commutative polynomial ring

S(1,−1,0) = k[x, y, z]. Contrary to the behavior of k[x, y, z], for (generic) parameters

di, ei, we have the following computations for the center of a central extension of

k[x, y, z].
Lemma V.11. 1. Let D be a generic central extension of k[x, y, z]. Then for

1 ≤ n ≤ 3, the k-vector spaces Z(D)n are generated by w and

q = d
1

x2 + d
2

y2 + d
3

z2 + 2e
1

wx + 2e
2

wy + 2e
3

wz.

2. Let D be the central extension of a k[x, y, z] given in the table below. Then for

1 ≤ n ≤ 6, the k-vector spaces Z(D)n are generated by w and the element q given

as follows:

D q

D(1,−1,0,0,0,0, e
1

, e
2

, e
3

) e
1

x + e
2

y + e
3

z

D(1,−1,0, d
1

, d
2

, d
3

,0,0,0) d
1

x2 + d
2

y2 + d
3

z2

D(1,−1,0, d
1

,0,0, e
1

,0,0) x

This leads us to the following claim.
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Conjecture V.12. The center of D(1,−1,0, di, ei) (respectively of D with di = 0,

with ei = 0, and with d
2

= d
3

= e
2

= e
3

= 0) is generated by the elements w and q given

in Lemma V.11. Thus D is not PI.

If this conjecture holds, then we see that a result such as Theorem I.18 clearly

does not apply. In other words, the structure of Z(D) does not necessarily depend

on the order of �D (= ���). However we will see that this relationship does hold for

other cases, such as ��� = 3.
We proceed to study the center of D with � of higher order. Since the algebra

program A�ne does not accommodate for complex parameters and parameters with

fractional powers, according to Proposition A.1 we restrict our attention to ��� =
2,3,6.

Case: ��� = 2
Here we have that ��� = 2 if and only if the parameters (a, b, c) equal (1,1, c) with

c ≠ 0 and c3 ≠ 1 by Proposition A.1. Moreover by A�ne, we have a central element

ĝ
2

of D of degree 2:

(5.2)
ĝ
2

= d
2

(c4 − c)y2 + d
3

(−c3 + 1)yx + d
3

(−c3 + 1)xy + d
1

(c4 − c)x2

+(d2
3

− c2d
1

d
2

) ⋅wz + (−c2d
1

d
3

+ c3d2
2

) ⋅wy + (−c2d
2

d
3

+ c3d2
1

) ⋅wx.
Now for various parameters c, di, ei, we have computed the center of D up to

degree 12. For these examples, the k-vector spaces Z(D)n for 1 ≤ n ≤ 12, are

generated by w and ĝ
2

. Hence we make the following claim.

Conjecture V.13. For generic parameters di and ei, the center of the central ex-

tension D(1,1, c, di, ei) is k[ĝ
2

, w]. Moreover D is not PI.

Case: ��� = 3
By Proposition A.1, we know that ��abc� = 3 if and only if:



122

[a ∶ b ∶ c] =
���������������
[1 ∶ 0 ∶ !], for ! = −1, e⇡i�3, e5⇡i�3;
[1 ∶ ! ∶ 0], for ! = e⇡i�3, e5⇡i�3. .

For computational reasons mentioned above, we will focus on the case where (a, b, c) =
(1,0,−1).
Lemma V.14. The central extension D(1,0,−1, d

1

, d
2

, d
3

, e
1

, e
2

, e
3

) is module-finite

over its center, and thus is PI. Furthermore Z(D) is generated by four elements,

{⇢i}4i=1, of degree 3, and one element w of degree 1.

Proof. Note that S(1,0,−1) ≅D(1,0,−1, d
1

, d
2

, d
3

, e
1

, e
2

, e
3

)�(w) is module-finite over

its center as ��
1,0,−1� = 3 (Theorem I.18). Following [ST94, Lemma 3.6], we show that

there exists a graded subalgebra C of Z(D) so that the image of C in S = S(1,0,−1)
is Z(S). By [ST94, Theorem 3.7], Z(S) is generated by four elements of degree 3.

In fact by A�ne, we know that these generators are:

⇢
1

= zyx + yxz + xzy,
⇢
2

= y2x + xy2 + x2z,

⇢
3

= yx2 + xyx + x2y,

⇢
4

= x3.

Furthermore, we have by A�ne, four degree 3 central elements of D:

⇢̂
1

= ⇢
1

− d
1

(wzy) − d
2

(wy2) − d
3

(wyx) − d
2

(wxz) − d
3

(wxy) − d
1

(wx2)
+(e

3

+ d
1

d
2

)(w2z) + (e
2

+ d
1

d
3

+ d2
2

)(w2y) + (e
1

+ d
2

d
3

+ d2
1

)(w2x),
⇢̂
2

= ⇢
2

− d
1

(wy2) − d
2

(wyx) − d
1

(wxz) − d
2

(wxy) − d
3

(wx2) − e
1

(w2z)
+d

1

d
2

(w2y) + (−e
2

+ d
1

d
3

)(w2x),
⇢̂
3

= ⇢
3

− d
1

(wyx) − d
1

(wxy) − d
2

(wx2) − e
1

(w2y) + (e
3

+ d
1

d
2

)(w2x),
⇢̂
4

= ⇢
4

− d
1

(wx2) − e
1

(w2x).
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Let C be the graded subalgebra of Z(D) generated by the ⇢̂i. Since the image of ⇢̂i

in S is ⇢i, we have by [ST94, Lemma 3.6] that both Z(D) = k[⇢̂
1

, ⇢̂
2

, ⇢̂
3

, ⇢̂
4

, w] and
D is module-finite over this center.

Thus Conjecture V.9 holds for a central extension D with ��� = 3. For the other

four central extensions D where ��� = 3, we believe that Z(D) is generated by w,

and elements {⇢̂i,! }4i=1 which are the elements ⇢̂i with coe�cients involving ! and

!2. This prompts the following claim.

Conjecture V.15. Let D be a central extension of Skly
3

for which ���=3. Then the

center of D is generated by w and four elements of degree 3, and D is module-finite

over its center. In other words, Conjecture V.9 holds for ���=3.
Cases: ��� = 4,5

If the automorphism �abc has order 4 or 5, then one of the parameters, b or

c, is a complex number or involves a fractional power (Proposition A.1). For the

computational reasons mentioned above, we will omit these cases for now.

Case: ��� = 6
By Proposition A.1, we know that ��abc� = 6 if and only if:

[a ∶ b ∶ c] =
���������������
[1 ∶ b ∶ ⇣] , [1 ∶ b ∶ b⇣] , for b ≠ 0, b3 ≠ 1,
[1 ∶ ⇣ ∶ c] , [1 ∶ c⇣ ∶ c] , for c ≠ 0, c3 ≠ 1, ⇣ ≠ 1. ,

where ⇣ is a third root of 1. For computational purposes, we will only study the

cases where ⇣ = 1. Our approach to study Z(D) is given in the following remark.

Remark V.16. We believe that we can employ the approach of the ��� = 3 case.

Namely, compute the center of D in degree 3 and 6, then show that the images of

these elements under the surjection D� Skly
3

are generators of Z(Skly
3

). However
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due to memory constraints, the computations with arbitrary parameters di, ei cannot

be executed at this time.

5.4 On the fat point modules of D

In the spirit of [Art92], [LB95b], and [SS93], we study fat point modules over D by

presenting them as a quotient of a line module by a shifted line module. Although for

generic D, we will see that we have to take other “curve modules” into consideration.

We restrict our attention to the cases where ��� =∞ (to say D = D(1, b, c, di, ei))
and ��� = 2 (to say D = D(1,1, c, di, ei)) as we have shown/ conjectured that such D

are not PI (Proposition V.10, Conjecture V.13). (Here we assume by rescaling that

the parameter a equals 1.) In fact, we have respective central subalgebras k[ĝ
3

, w]
and k[ĝ

2

, w] for these central extensions, where deg(ĝd) = d. We will use this data

towards our aim to verify the nonexistence of fat point modules of D with ��� = 2,∞,

or rather towards our aim to prove Conjecture V.9 for these cases.

Now given a fat point module F of D, our strategy to study F breaks down into

four tasks:

I. Compute line modules Ml of D.

II. Compute central annihilators ⌦l for the line modules Ml.

In fact, we want our fat point module F to a share a central annihilator with some

line module Ml. By [LB95b, proof of Proposition 10], the intersection of annDF and

the graded central subalgebra k[ĝd, wd] is nonzero. Hence for every point [↵ ∶ �] ∈ P1,

we require a line moduleM↵� with corresponding central annihilator ⌦↵� = ↵wd+�ĝd.
Continuing with our strategy, we have the final two tasks:
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III. Present F (say of multiplicity ✏ > 1) by line modules. In other words, verify the

existence of an exact sequence in D-qgr:

0→Ml′[−✏]→Ml → F → 0,

for line modules Ml and Ml′ of D.

IV. Use the geometry of the line scheme of D (Proposition V.4) to yield results

about the structure/existence of the fat point module F .

Remark V.17. Karen Smith suggested that presenting fat point modules of D with

plane modules (rather than line modules) may be useful. In particular, does there

exists a sequence

0�→ n−1�
j=1 MH′′

j

�→ n�
i=1 MH′

i

�→MH �→ F �→ 0

for plane modules MH , MH
i

, MH
j

of D? For now, we leave it to the reader to explore

such an approach.

Case: ��� =∞
I. We begin by constructing a family of line modules for D =D(1, b, c, di, ei).
Lemma V.18. Given a central extension D =D(1, b, c, di, ei), we have a 5 parameter

family of line modules of D:

�Ml = D

D(x + u
2

y + u
3

z + u
4

w) +D(v
1

x + u
2

v
1

y + u
3

v
1

z + v
4

w)� ,
where u

2

, u
3

, u
4

, v
1

, v
4

∈ k and (v
1

, v
4

) ≠ (0,0).
Proof. By [LBSVdB96, Proposition 4.1], there is a bijective correspondence between

line modules of D:

{D�(Du +Dv) � u, v ∈D
1

},
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and rank two tensors of D:

{r ⊗ u − sv ∈ RD � r, s, u, v ∈D1

}
where RD is the ideal of relations of D. With A�ne, we have constructed a 5

parameter family of rank two tensors given by:

r = (b
1

v
1

) ⋅ x + (b
1

u
2

v
1

) ⋅ y + (b
1

u
3

v
1

) ⋅ z + (b
1

v
4

) ⋅w,
s = b

1

⋅ x + (b
1

u
2

) ⋅ y + (b
1

u
3

) ⋅ z + (b
1

u
4

) ⋅w,
u = x + u

2

⋅ y + u
3

⋅ z + u
4

⋅w,
v = v

1

⋅ x + (u
2

v
1

) ⋅ y + (u
3

v
1

) ⋅ z + v
4

⋅w,
with ui, bi, vi ∈ k for i = 1,2,3,4. The verification computation is Routine A.6 in the

appendix.

II. Next, we need to compute the central annihilators ⌦l for the line modules

Ml = D�Du + Dv given in the lemma above, aiming to get a P1’s worth of pairs

(Ml,⌦l) with ⌦l ⋅Ml = 0. Note that dimkD2

= 10. Thus for i = 1,2, we require scalars
{ai,j} so that

fi = ai,1x2 + ai,2xy + ai,3xz + ⋅ ⋅ ⋅ + ai,10w2 ∈D
2

with f
1

u + f
2

v = ↵w3 + �ĝ
3

for some [↵ ∶ �] ∈ P1. This computation is unattainable at the moment due to

memory restrictions, yet we proceed to step III assuming that this task has been

achieved; see Assumption V.20 below.

III. Along with line modules, we also consider the following geometric modules.

Definition V.19. A plane degree d curve module of D is a cyclic graded left

D-module M with Hilbert series:

HM(t) = 1 + t + ⋅ ⋅ ⋅ + td−1(1 − t)2 .



127

Assumption V.20. Recall that for ��� =∞, we aim to prove that fat point modules

over D do not exist via the use of the presentation of D-line modules. Moreover

recall that if fat point modules of D, then we get that annDF ∩ k[w3, ĝ
3

] ≠ 0. Hence
there will be a central annihilator ⌦↵� = ↵w3 + �ĝ

3

of F , and we need ⌦↵� ⋅Ml = 0
for some D-line module Ml.

1. We assume that we have a pair (M↵�, ⌦↵�) of a line module with corresponding

central annihilator for every point [↵ ∶ �] ∈ P1.

2. We assume that ⌦↵� ≠ ⌦10

= w3. Otherwise F is a fat point module over Skly
3

which does not exist as ��� =∞ [ATVdB91, Theorem 7.5, Corollary 7.9]. Hence

we are done in this case, i.e. we have verified Conjecture V.9.

As the central extension D is quadratic Auslander regular of global dimension

4 with Hilbert series (1 − t)−4 [LBSVdB96, Corollary 2.7], we employ the following

result of LeBruyn relevant to D.

Proposition V.21. [LB95b, Proposition 10] For a central extension D of Skly
3

,

assume that the following conditions hold.

(H1) D has two central elements wd and ĝd of degree d.

(H2) For every ⌦ = ↵wd + �ĝd with [↵ ∶ �] ∈ P1, there is a line module M
⌦

= D�DU

with U a 2-dimensional subspace of D
1

such that:

(H2a) ⌦ ⋅M
⌦

= 0;
(H2b) For every u ∈ U , ⌦ ⋅ (D�Du) ≠ 0;
(H2c) M

⌦

has a point module as a quotient.

Then every fat point module of D is either a quotient of a line module or of a plane

degree d − 1 curve module of D.
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We proceed by showing that the hypothesis of this proposition hold for D with

��� =∞.

Lemma V.22. The hypotheses of Proposition V.21 hold for D with ��� =∞.

Proof. Now (H1) holds by taking d = 3 (Equation (5.1)). Considering the family of

line modules constructed in Lemma V.18, Assumption V.20 implies that (H2a) holds.

By [LBSVdB96, Proposition 5.1.1(2)], we get that line modules M =D�Du+Dv with

u, v ∈ D
1

correspond to lines l = V(u, v) ⊆ P3 in the line scheme of D. Recalling the

structure of the line scheme (Proposition V.4), we know that M�Mw (corresponds

to the point V(u, v,w) ∈ E and) is a point module of Skly
3

, and thus of D. Hence

condition (H2c) holds.

Finally we have that condition (H2b) holds as follows. Suppose not, i.e. that

there exists u ∈ U with ⌦ ⋅(D�Du) = 0. Then ⌦ = du for some d ∈D
2

. In the domain,

B ≅ D�(Dw +Dg), we have that du = ⌦ = 0. So either d or u equals 0. In the first

case d = aw for some a ∈D
1

, and in the second case u = bw for some b ∈ k. Both cases

imply that w divides ⌦, which contradicts Assumption V.20(2).

Therefore given a fat point module F of multiplicity ✏ > 1, we have one of the

presentations of F in D-qgr:

0→K →Ml → F → 0 or 0→K → N → F → 0,

where Ml is a line module of D and N is a plane curve degree 2 module of D. Since

we do not have results on the kernel of N � F at this time, we make the following

assumption.

Assumption V.23. Given a fat point module F of D, we assume that F is the

quotient of a line module Ml of D.
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Now we study the kernel of Ml � F . Before we do so, consider the following

terminology.

Definition-Lemma V.24. [LBSVdB96, Corollary 2.7] Given a central extension D

of Skly
3

, let M be a finitely generated D-module.

1. The grade of M is the quantity j(M) ∈ N ∪ {+∞} defined by

j(M) ∶= inf{i � ExtiD(M,D) ≠ 0}.
2. D is a Cohen-Macaulay (CM) ring in the sense that

GKdim(M) + j(M) = 4 (= gldim(D)).
3. The module M is called a Cohen Macaulay (CM) module if pd(M)=j(M),

to say ExtiD(M,D) = 0 if i ≠ j(M).
Proposition V.25. Let F be a fat point module of D of multiplicity ✏ > 1, which
is the quotient of a line module Ml. Then we have that the kernel of Ml � F is

isomorphic to a shifted line module Ml′[−✏].
Proof. We assume that

(5.3) 0�→K �→Ml �→ F �→ 0,

exact in D-qgr. Without loss of generality, we can assume that this sequence is

exact in D-gr as F is equivalent to a submodule for which this condition holds. We

now have to show that K is a shifted line module. Apply HomD(−,D) to sequence

(5.3) and take cohomology. Let Ei(P ) ∶=ExtiD(P,D) for a D-module P . We get the

following long exact sequence:

0 // HomD(F,D) // HomD(Ml,D) // HomD(K,D)
rrf

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

E1(F ) // E1(Ml) // E1(K) . . .
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Since D is a Cohen Macaulay ring, we have that:

j(F ) = GKdim(D) −GKdim(F ) = 4 − 1 = 3.
Moreover line modules have GK-dimension 2, so we have that:

j(Ml) = GKdim(D) −GKdim(Ml) = 4 − 2 = 2.
Since 2 = j(Ml) = inf{j(K), j(F ) = 3} [LS93, remarks on p.43], we get that j(K) = 2.
Now Ei(Ml) = Ei+1(F ) = 0 for i ≠ 2; hence Ei(K) = 0 for i ≠ 2 = j(K). Thus K

is CM of GK-dimension 2 (which equals GKdimD − j(K)). Moreover we get that

mult(K) = 1 as mult(Ml) =1.

It now remains to verify the following statement.

Sublemma. If K is a finitely generated graded D-module, CM, of GK-dimension 2

and multiplicity 1, then K is a shifted line module.

Proof of Sublemma. This proof is based on techniques of [LS93, 2]. We first shift

the grading of K to assume that

K =K
0

⊕K
1

⊕K
2

⊕ . . .

with K
0

≠ 0. Moreover K is 2-critical due to [LS93, Lemma 1.11].

If w is a zero divisor of K, then we get that wK = 0 by [LS93, Lemma 2.10]. Thus

K is a module over Skly
3

and is isomorphic to a shifted line module by [ATVdB91,

Proposition 6.2].

If w is a nonzero divisor of K, then form K =K�wK. Since HK(t) = (1−t)HK(t),
we have that GKdim(K)=1 and mult(K)=1. Considering the sequence

0�→K
⋅w�→K[1]�→K[1]�→ 0,
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we have that the first two terms are CM, thus K is also CM [LS93, Lemma 1.12].

Hence by [LS93, Proposition 2.6],

HK(t) = tp(1 − t)−1 = tp + tp+1 + tp+2 + . . .
for some p ∈ Z. For i ≤ 0:

dimKi = dimKi − dim(wK)i
= dimKi − dimKi−1 = dimKi,

so p = 0. Thus HK(t) = (1 − t)−1 and so HK(t) = (1 − t)−2. Now we must show that

K is cyclic.

Let K∨ ∶= E2(K), the dual of K. Since K ≅ (K∨)∨, it su�ces to prove that K∨
is cyclic. By [LS93, Remark 1.12], if P● @→K → 0 is a minimal resolution of K, then

P ∨● @∨→ K∨ → 0 is a minimal resolution of K∨. More precisely, consider the following

minimal resolution of K:

0�→�
i

D[−i]pi @1�→�
i

D[−i]mi

@0�→�
i

D[−i]ni �→K �→ 0

where ni is the number of generators of K of degree i. Then, the sequence below is

a minimal resolution of K∨:
0�→�

i

D[i]ni

@∨0�→�
i

D[i]mi

@∨1�→�
i

D[i]pi �→K �→ 0

where pi is the number of generators of K∨ of degree −i.
Since K =�

i≥0 Ki, we have that ni = 0 for i ≤ −1. Therefore mi = 0 for i ≤ 0 and

pi = 0 for i ≤ 1. Now by [LS93, Proposition 1.10], the Hilbert series of K∨ is
HK∨(t) = t−4HK(t−1) = t−2 + 2t−1 + 3 + 4t + 5t2 + . . . .

Thus p
2

= 1 and pi = 0 for i ≥ 3. Hence K∨ is cyclic with a generator in degree -2,

and so K is cyclic as desired. This concludes the proof of the sublemma.



132

Thus K is a shifted line module over D with HK(t) = td(1 − t)−2. This implies

that

HF (t) =HM
l

(t) −HK(t) = (1 + t + ⋅ ⋅ ⋅ + td−1)(1 − t)−1.
Hence ✏ = mult(F ) = d and K ≅Ml′[−✏] for some line module Ml′ over D.

IV. Although we do not have a conclusion about the existence/ structure of fat point

modules for D with ��� =∞, we do have the following geometric result involving the

line modules of D, which is an adaptation of [ATVdB91, Propositions 6.23, 6.24].

Proposition V.26. Let D = D(1, b, c, di, ei) be a central extension of Skly
3

. For a

fat point module F of multiplicity ✏ > 1, consider the exact sequence

0→Ml′[−✏]→Ml → F → 0

resulting from Proposition V.25, where Ml and Ml′ are line modules over D. Then

we have that l′ ∩E = �−✏(l ∩E).
Proof. We use techniques from [ATVdB91, 6]. Say Ml = D�(Du + Dv) for some

u, v ∈ D
1

and so l = V(u, v) ⊆ P3 [LBSVdB96, Proposition 5.1.1]. Let P be the

scheme theoretic intersection of l and E which is nonempty due to [LBSVdB96, page

204]. Let M(P ) = (�∗(OP ))≥0 where �n(OP ) =H0(E,OP ⊗Ln). This is a B-module.

Taking �∗ of OE → OP yields B →M(P ), surjective in high degree. Now we get the

map � as in the following diagram:

B =D�(w, g)
''

N

N

N

N

N

N

N

N

N

N

N

0 // K(P ) // D

99

s

s

s

s

s

s

s

s

s

s

s �
//_____________ M(P ) // 0

with the horizontal sequence exact in D-qgr. Thus M(P ) is equivalent to D�K(P )
in D-qgr. Since P is a 0-dimensional subscheme of E, let P=Spec R for some finite
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k-algebra R. Hence

R ≅ H0 (E,O
SpecR) = H0(E,OP ⊗L0) = M(P )

0

.

This implies that �(1D) = 1R. Now
P ⊆ l = V(u, v) ⇐⇒ u ⋅ 1R = v ⋅ 1R = 0 in M(P ) ⇐⇒ u, v ∈K(P ).

Hence � ∶D →M(P ) factors through the D-gr surjection D�Ml to get the map  

below:

0 // K(P ) // D
�

//

��

��

@

@

@

@

@

@

@

@

M(P ) // 0

Ml

 

;;

x

x

x

x

As � is surjective in D-qgr, the cokernel of � is finite dimensional. Thus coker is

also finite dimensional. Consider the following diagram.

0 //Ml′[−✏] //Ml
//

 

✏✏

F // 0

M(P )
Now ker �⊆Ml′[−✏]; else we get the induced map F →M(P ) which implies that

F �(ker(F →M(P ))), equivalent to a submodule of M(P ). So the fat point module

F would be a B-module, a contradiction. Note that Ml�(ker +Ml′[−✏]) is finite

dimensional due to F being 1-critical. Consider the map  �M
l

′[−✏] and we get that:

coker( �M
l

′[−✏]) ≅ M(P )
im( �M

l

′[−✏])
≅ M(P )

Ml′[−✏]�(ker ∩Ml′[−✏])
≅ � Ml

ker 
� ��ker +Ml′[−✏]

ker 
� ,
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and the latter is finite dimensional. Therefore  �M
l

′[−✏] ∶Ml′[−✏] →M(P ) has finite
cokernel. By shifting we get that Ml′ → M(P )[✏] ≅ M(�−✏P ) and this map has a

finite cokernel. Thus l′ contains �−✏P and �−✏P = (�−✏P )∩E ⊆ l′∩E, which implies

that scheme-theoretically: l′ ∩E = �−✏P .

Case: ��� = 2
Now we analyze fat point modules of D(1,1, c, di, ei) via the steps I - IV stated

at the beginning of the section. Most results will follow in a similar fashion to

the ��� = ∞ case. However a conclusion about the existence/ structure of fat point

modules for these central extensions D remains unknown.

I. We begin by constructing a family of line modules.

Lemma V.27. Given a central extension D(1,1, c, di, ei), we have a 5 parameter

family of line modules of D:

�Ml = D

D(x + u
2

y + u
3

z + u
4

w) +D(v
1

x + u
2

v
1

y + u
3

v
1

z + v
4

w)� ,
where u

2

, u
3

, u
4

, v
1

, v
4

∈ k.
Proof. Referring to the proof of Lemma V.18, note that the line modules do not

depend on the parameter b. Hence we obtain the same family of line modules

{Mu2u3u4v1v4} for D(1,1, c, d1, d2, d3, e1, e2, e3).
II. For D with ��� = 2, Assumption V.20 is not needed as we have the following result.

Lemma V.28. For D =D(1,1, c, di, ei), the line modules {Mu2u3u4v1v4} have central

annihilators ⌦l = ĝ
2

+ �w2 where � depends on scalars u
4

, v
1

, v
4

. Thus we get a

pair (M↵�, ⌦↵�) of a line module and corresponding central annihilator for each

[↵ ∶ �] ∈ P1.
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Proof. If [↵ ∶ �] = [1 ∶ 0], then ⌦↵� = w3. Moreover we have line modules M over

Skly
3

, which exist by Example II.20, so that w3 ⋅M = 0. On the other hand, if

[↵ ∶ �] ≠ [1 ∶ 0], then [↵ ∶ �] = [� ∶ 1] for some � ∈ k and ⌦↵� =∶ ⌦� = �w2 + ĝ
2

.

See Routine A.7 in the appendix for the proof that for all � ∈ k, we have that ⌦�

annihilates some line module Mu2u3u4v1v4 .

III. Now we have that fat point modules of D =D(1,1, c, di, ei) are presented by line

modules of D by the following argument.

Proposition V.29. Let ��� = 2, so we consider the central extension

D = D(1,1, c, di, ei) over S(1,1, c). Take F a fat point module of D of multiplicity

✏ > 1. Then there exist line modules Ml and Ml′ for which 0→Ml′[−✏]→Ml → F → 0

is exact in D-qgr.

Proof. First note that we do not require Assumption V.23 as Proposition V.21 holds

for d = 2. In other words, we always get that F is the quotient of a line module (as

a plane curve degree 1 module is a line module by definition). The rest of the proof

follows from the proof for Proposition V.25.

IV. Moreover we have the same geometric result (Proposition V.26) from the ��� =∞
case, and its proof follows in the same manner.

Proposition V.30. Let D = D(1,1, c, di, ei) be a central extension of S(1,1, c).
For a fat point module F of D of multiplicity ✏ > 1, consider the exact sequence

0 → Ml′[−✏] → Ml → F → 0 resulting from Proposition V.29, where Ml and Ml′ are

line modules over D. Then we have that l′ ∩E = �−✏(l ∩E).
Thus for ��� = 2, we understand D-fat point modules in terms of D-line modules

and have some results about the geometry of such modules.
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APPENDIX A

Computational results, A�ne and Maple routines

This appendix contains computational results and computer routines pertaining

to the order of � for the three-dimensional Sklyanin algebras Skly
3

= S(a, b, c) (Def-
inition I.2), to the 1-dimensional representations of deformed Sklyanin algebras Sdef

(Definition I.12), and to the line modules over central extensions D of Skly
3

(Defi-

nition IV.6).

The automorphisms � of finite order

Recall from 2.1.3 that the three-dimensional Sklyanin algebras S = S(a, b, c) come

equipped with geometric data (E,L,�) where E = Eabc ⊆ P2 is given by:

E = Eabc ∶ V �(a3 + b3 + c3)xyz − (abc)(x3 + y3 + z3)� i⊂ P2,

and L is the invertible sheaf i∗OP2(1) on E. Here we assume that E is smooth, i.e.

E is either P2 or an elliptic cubic curve. Moreover � = �abc is an automorphism of E

induced by the shift functor on point modules of S whose image is the cross product

of any two rows of the matrix Mi from Equation (2.1) [ATVdB90, 1]. In other words,

� can be explicitly given as follows:

(A.1) �([x ∶ y ∶ z]) = [acy2 − b2xz ∶ bcx2 − a2yz ∶ abz2 − c2xy].
Now the behavior of S(a, b, c) varies according to ��abc�. More precisely, S(a, b, c) is

module-finite over its center if and only if ��abc� <∞ [ATVdB91, Theorem 7.1]. Hence

Note:
We assume that 
the base field k
is \mathbb{C}
for these compu-
tations.
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the following proposition yields the first steps in the classification of the parameters

(a, b, c) of Skly
3

for which the automorphism �abc of smooth Eabc have finite order.

Since S(a, b, c) ≅ S �1, b
a ,

c
a
�, we assume that a = 1.

Proposition A.1. Let ⇣ be a third root of unity. Then we have the following results.

● ��� = 1 ⇐⇒ [a ∶ b ∶ c] = [1 ∶ −1 ∶ 0], the origin of E.

● ��� = 2 ⇐⇒ [a ∶ b ∶ c] = [1 ∶ 1 ∶ c], for c ≠ 0, c3 ≠ 1.

● ��� = 3 ⇐⇒ [a ∶ b ∶ c] =
���������������
[1 ∶ 0 ∶ !], for ! = −1, e⇡i�3, e5⇡i�3;
[1 ∶ ! ∶ 0], for ! = e⇡i�3, e5⇡i�3. .

● ��� = 4 ⇐⇒ [a ∶ b ∶ c] =
���������������
�1 ∶ b ∶ � b(b2+1)b+1 �1�3 ⇣� , for b ≠ 0,−1,±i, and b3 ≠ 1;
�1 ∶ �f(c)2�3−12(1−c3)

6f(c)1�3 � ⇣ ∶ c� , for c ≠ 0, c3 ≠ 1.
where f(c) = 108c3 + 12(12 − 36c3 + 117c6 − 12c9)1�3.

● ��� = 5 ⇐⇒ [a ∶ b ∶ c] =
�������������������������

�1 ∶ b ∶ � r±s1�2
2b �1�3 ⇣� , for b ≠ 0, b3 ≠ 1;

b ≠ primitive 10th root of unity,

[1 ∶ g(c) ∶ c] , for c ≠ 0, c3 ≠ 1.
where r = -b5 + b4 + b3 + b2 + b − 1 and s = (b2 − 3b + 1)(b − 1)2(b2 + b − 1)3.
Moreover g(c) is a root of

Z6 + (c3 − 1)Z5 + (1 − c3)Z4 + (−1 − c3)Z3 + (1 − c3)Z2 + (c6 − c3)Z + c3.

● ��� = 6 ⇐⇒ [a ∶ b ∶ c] =
���������������
[1 ∶ b ∶ ⇣] , [1 ∶ b ∶ b⇣] , for b ≠ 0, b3 ≠ 1,
[1 ∶ ⇣ ∶ c] , [1 ∶ c⇣ ∶ c] , for c ≠ 0, c3 ≠ 1, ⇣ ≠ 1.

Correction (pointed out by Daniel Reich): 
For |\sigma|=n \leq 3, 
only the implications <= hold.
We actually have more 
parameters [a:b:c] so that 
\sigma_{a,b,c} has order n.
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Proof. Refer to Routine A.3.

Remark A.2. Although there is no apparent pattern for the parameters (1, b, c) of
a given ��� = n, we believe that there are the following restrictions of b and c for n ≥ 4.
1. When b is arbitrary and we solve for c, we must have that b ≠ 0 and b3 ≠ 1.

Moreover for

4�n: b ≠ primitive nth root of 1,

n even, 4 �� n: b ≠ primitive �n
2

�th root of 1,

n odd: b ≠ primitive (2n)th root of 1.

2. When c is arbitrary and we solve for b, we must have that c ≠ 0 and c3 ≠ 1.
Computer Routines

A�ne / Maple routines are given as follows:

### AFFINE / MAPLE ###

Sample routine

## Sample comment

Routine A.3. This is the proof of Proposition A.1.

### MAPLE ###

## Let |sigma| =:n, and take n>1. Make sure to change n as needed!

n:= 6;

## Let us define sigma.

p:=(x,y,z)->a*c*y^2-b^2*x*z:

q:=(x,y,z)->b*c*x^2-a^2*y*z:
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r:=(x,y,z)->a*b*z^2-c^2*x*y:

x[0]:=x: y[0]:=y: z[0]:=z:

## We assume that a=1.

a:=1:

## For a given n, let x[n], y[n], z[n] be the entries of the image

## of sigma^n. Let us define sigma^n.

for k from 0 to n-1 do

x[k+1]:=p(x[k],y[k],z[k]);

y[k+1]:=q(x[k],y[k],z[k]);

z[k+1]:=r(x[k],y[k],z[k]);

end do:

## We want (x[n]:y[n]:z[n]) = (x:y:z) projectively.

## So we need f=y*x[n]-x*y[n], g=z*x[n]-x*z[n], h=z*y[n]-y*z[n]

## to be zero for some parameters (a,b,c), subject to the

## defining relation of E.

f:=y*x[n]-x*y[n]: g:=z*x[n]-x*z[n]: h:=z*y[n]-y*z[n]:

E:=((1+b^3+c^3)/(b*c))*(x*y*z)-x^3-y^3:

## We will replace the term z^3 with the expression E.

d[1]:=2^n+1:

## Special care is needed for the n=2 and n=3 cases.

## In general, reduce f,g,h with respect to the relation of E.

## For n>6 we reduce f first, then g and h later.
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for k from 1 to n-1 do

f:= expand(f-(add( coeff(f,z^i)*z^i, i=3..d[k]+1 ))

+ add( coeff(f,z^j)*z^(j mod 3)*E^(iquo(j,3)), j=3..d[k]+1));

g:= expand(g-(add( coeff(g,z^i)*z^i, i=3..d[k]+1 ))

+ add( coeff(g,z^j)*z^(j mod 3)*E^(iquo(j,3)), j=3..d[k]+1));

h:= expand(h-(add( coeff(h,z^i)*z^i, i=3..d[k]+1 ))

+ add( coeff(h,z^j)*z^(j mod 3)*E^(iquo(j,3)), j=3..d[k]+1));

d[k+1]:= iquo(d[k],3) + irem(d[k],3);

end do:

## Now the degree of f,g,h with respect of z should be <3.

degree(f,z); degree(g,z); degree(h,z);

## We can either: (I) Let b be arbitrary and solve for c, or

## (II) Let c be arbitrary and solve for b

## Here is the computation for (I):

for k from 1 to 1 do

if type(n,odd) then

v:=solve(coeff(f,x^(d[1]))=0,c);

w:=solve(coeff(coeff(f,x^(d[1]-3)),y^3)=0,c);

else

v:=solve(coeff(coeff(f,x^(d[1]-1)),y)=0,c);

w:=solve(coeff(coeff(f,x^(d[1]-4)),y^4)=0,c);

end if end do:
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## Here is the computation for (II):

for k from 1 to 1 do

if type(n,odd) then

v:=solve(coeff(f,x^(d[1]))=0,b);

w:=solve(coeff(coeff(f,x^(d[1]-3)),y^3)=0,b);

else

v:=solve(coeff(coeff(f,x^(d[1]-1)),y)=0,b);

w:=solve(coeff(coeff(f,x^(d[1]-4)),y^4)=0,b);

end if end do:

## We create a list of potential nonzero unique solutions

lenv:=nops([v]): lenw:=nops([w]):

u:=[]:

for i from 1 to lenv do

for j from 1 to lenw do

t:=evalb(v[i]=w[j]):

if t=true then

if v[i] <> 0 then

u:=[op(u),v[i]];

end if end if end do: end do:

lenu:=nops(u):

with(ListTools): L:=MakeUnique(u); lenL:=nops(L);

## So L is the list of solutions for which we need verify

## that f,g,h (now reduced by the relation of E) are 0
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## Case (I), letting b be arbitrary we use the subroutine:

for k from 1 to lenL do

c:=expand(L[k]): print(simplify(c));

newf:=expand(f): newg:=expand(g): newh:=expand(h):

print(k, simplify(newf), simplify(newg), simplify(newh));

end do:

## (II) For c arbitrary we use the subroutine:

for k from 1 to lenL do

b:=expand(L[k]): print(simplify(b));

newf:=expand(f): newg:=expand(g): newh:=expand(h):

print(k, simplify(newf), simplify(newg), simplify(newh));

end do:

## If the output is "0,0,0", then L is the desired list of

## parameters (1,b,c) so that sigma(1bc)^n = 1.

## Eliminate by hand parameters (1,b,c) for which

## sigma(1bc)^m = 1 with m<n.

___________________

## ORDER 2 RESULTS:

## Compute f,g,h (modulo the relation of E) for sigma^2 as described

## at the beginning of the routine. In particular, we want

## (reduced) f to equal zero for some parameters (1,b,c).

> collect(f,[z,y,x]);

((c - b^3 c) y^3 + (b^2 c - b^5 c) x^3 ) z^2 + [...]
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## Consider the coefficient of y^3*z^2: c(b^3-1).

## If equal to zero, then c=0 or b^3=1.

## If c=0 and b is arbitrary, then either E is not smooth

## or |sigma|=3. Therefore we take c nonzero.

## First let b=1. Then we get that c arbitrary yields a solution.

> L:=MakeUnique(u);

L := [c[1]]

> b:=1;

b := 1

> (simplify(f),simplify(g),simplify(h));

0, 0, 0

## Now let b:=exp(2*Pi*I/3);

> L:=MakeUnique(u);

L := [1, - 1/2 + 1/2 I 3^(1/2), - 1/2 - 1/2 I 3^(1/2)]

## so c^3=1, and S is not a Sklyanin algebra.

## Likewise result for b:=exp(4*Pi*I/3);

## Therefore the only solution is (1,b,c) = (1,1,c)

## for c nonzero, not a third root of 1.

___________________

## ORDER 3 RESULTS:

## (I) b nonzero and arbitrary, solving for c:

> L:=MakeUnique(u); lenL:=nops(L);

L := [] lenL := 0

## (II) same as (I)
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## If b=0, then E is a triangle, unless c = 3rd root of -1.

## Vice versa for c=0.

## For all six cases:

> (simplify(f),simplify(g),simplify(h));

0, 0, 0

## Now we can conclude the result in the case of |sigma|=3.

___________________

## ORDER 4,5,6 RESULTS for subroutines (I, II) are given in Prop. A.1

Routine A.4. We explicitly list the 1-dimensional representations of

Sdef(a, b, c, di, ei) for each of the cases: di = 0, ei = 0, and d
2

= d
3

= e
2

= e
3

= 0. We

use the following short list of commands in Maple, and by rescaling we assume that

the parameter a is 1.

### MAPLE ###

a:=1;

f:=a*y*z + b*z*y + c*x^2 + d1*x + e1;

g:=a*z*x + b*x*z + c*y^2 + d2*y + e2;

h:=a*x*y + b*y*x + c*z^2 + d3*z + e3;

v:=solve({f=0, g=0, h=0}, [x,y,z]);

For di = 0, there is one 1-dimensional representation:

v := [[x = (-e2 c e1^2 b^2 - 2 e2 c e1^2 b {...}

- 4 %1^2 e2^2 b) / ((1 + b) (%1^2 c^3 e2 {...}

+ c e1^2 b^2 + c e1^2 ) %1),

y = - %1 (2 e3 c {...} + 2 %1^2 c^3 e3 e2) /
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(-e2 c e1^2 b^2 {...} - 4 %1^2 e2^2 b), z = %1]]

%1 := RootOf((c + 3 c^4 + 3 c^7 + {...} + c^2 e2^2 e1^2 )

For ei = 0, there are five 1-dimensional representations:

v := [[x = 0, y = - d2/c, z = 0],

[x = 0, y = 0, z = - d3/c],

[x = 0, y = 0, z = 0],

[x = - d1/c, y = 0, z = 0],

[x = - (%1 d1 b^3 {...} d3) / (c (%1 d3 b^3 {...} - d1^2)^2),

y = %1,

z = (-%1^2 b^4 d1 - {...} d2 d3^2 c^2)/ (c {...} - d1^2)]]

%1 := RootOf((3 c^3 + {...} + 5 d3^2 b^4 d1^2)

For d
2

= d
3

= e
2

= e
3

= 0, there are three 1-dimensional representations:

v := [[x = RootOf(c _Z^2 + d1 _Z + e1), y = 0, z = 0],

[x = %2 c, y = -%2 (1 + b), z = -%2 (1 + b)],

[x = ((%1 b^3 + {...} + c d1) c %1^2) / (e1 + %1 c d1),

y = - (e1 b + %1 b c d1 + e1 + %1 c d1)/(%1 b^3 + {...} + c d1),

z = %1 (1 + b)]]

%1 := RootOf((2 c^3 + {...} + c d1) _Z^3 , label = _L2)

%2 := RootOf((1 + {...} + c^3) _Z^2 + e1 + c d1 _Z, label = _L1)



147

Routine A.5. Here we compute the point scheme of a central extensionD of a three-

dimensional Sklyanin algebra. A detailed point scheme computation in provided in

Proposition II.15 for example. Recall the definition of a dth truncated point scheme

Vd (Definition II.4) and the results of Definition-Lemma II.6. Furthermore, note that

V
1

for D is isomorphic to P3. Considering the multilinearizations of relations of D,

we get that Mi ⋅ [xi+1 ∶ yi+1 ∶ zi+1 ∶ wi+1]T = 0 for

Mi =

���������������������

cxi bzi ayi d
1

xi + e1wi

azi cyi bxi d
2

yi + e2wi

byi axi czi d
3

zi + e3wi

−wi 0 0 xi

0 −wi 0 yi

0 0 −wi zi

���������������������

.

To show that the point scheme data (Vd,⇡d) of D stabilizes at d = 2, we must verify

that rank(Mi)≥ 3 for all i ≥ 1. Suppose not, then we get from the routine below that

xi = yi = zi = wi = 0, a contradiction. Here we drop the index i.

### MAPLE ###

with(LinearAlgebra):

M:= << c*x | b*z | a*y | d1*x+e1*w >,

< a*z | c*y | b*x | d2*y+e2*w >,

< b*y | a*x | c*z | d3*z+e3*w >,

< -w | 0 | 0 | x >,

< 0 | -w | 0 | y >,

< 0 | 0 | -w | z >>;

## Create a list of the 4X4 full submatrices of M (in row notation).
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## There are 6 choose 4 (so 15) of them.

R:=[];

for i from 1 to 6 do

R:=[op(R),Row(M,i)]:

end do:

with(combinat):

S:=choose(R,4):

## Convert the matrices in row notation into the "Matrix" format.

L:=[]; L1:=[];

for n from 1 to 15 do

for i from 1 to 4 do

A[i]:=convert(S[n][i],Matrix):

end do:

B:=<Transpose(A[1])|Transpose(A[2])|Transpose(A[3])|Transpose(A[4])>:

C:=Transpose(B):

## Then for each of the 15 matrices,

## we compute the 3x3 minors and make a list of them.

for i from 1 to 4 do

for j from 1 to 4 do

m:=Minor(C,i,j):

L:=[op(L),m]:

end do: end do: end do:
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## We set the 240 3x3 minors equal to 0, then solve the system.

for i from 1 to 240 do

L1:=[op(L1),L[i]=0]:

end do:

v:=solve(L1,[x,y,z,w]);

v := [[x = 0, y = 0, z = 0, w = 0]]

Hence if all of the 3×3 minors of Mi vanish, then we get a contradiction. Thus

rank(Mi)≥ 3 for i ≥ 1. Now given the map ⇡
2

∶ V
2

→ P3, we know that the point

scheme PD of D is isomorphic to the graph of the image of ⇡
2

. Call this image X

and we have that

X = {[x
1

∶ y
1

∶ z
1

∶ w
1

] ∈ P3 � rank(M1) < 4}.
To compute X, we need solutions [x

1

∶ y
1

∶ z
1

∶ w
1

] ∈ P3 so that determinants of the

full 4 × 4 submatrices of M1 vanish. The following is the Maple routine to achieve

such a result; the solutions are explicitly provided in the cases where the parameters

di or ei are 0. Here we drop the index 1.

### MAPLE ###

## (Optional) d1:= 0; d2:= 0; d3:= 0; or e1:= 0; e2:= 0; e3:= 0;

## or d2:= 0; d3:= 0; e2:= 0; e3:= 0;

## Define the matrix M1.

with(LinearAlgebra):

M:= << c*x | b*z | a*y | d1*x+e1*w >,

< a*z | c*y | b*x | d2*y+e2*w >,

< b*y | a*x | c*z | d3*z+e3*w >,

< -w | 0 | 0 | x >,
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< 0 | -w | 0 | y >,

< 0 | 0 | -w | z >>;

## Create a list of the 4X4 full submatrices of M (in row notation).

## There are 6 choose 4 (so 15) of them.

R:=[];

for i from 1 to 6 do

R:=[op(R),Row(M,i)]:

end do:

with(combinat):

S:=choose(R,4):

## Convert the matrices in row notation into the "Matrix" format.

## Now for each matrix in the list, compute its determinant.

## Create a list of the 15 determinants excluding

## redundancies and zeros. Call this list T.

t:=[]:

for n from 1 to 15 do

for i from 1 to 4 do

A[i]:=convert(S[n][i],Matrix):

end do:

B:=<Transpose(A[1])|Transpose(A[2])|Transpose(A[3])|Transpose(A[4])>:

C:=Transpose(B):

d:=Determinant(C);

if d<>0 then



151

t:=[op(t),d]:

end if: end do:

with(ListTools):

T:=MakeUnique(t):

## Set each entry of list T equal to 0, and solve the system

## of equations for variables {x,y,z,w}.

W:=[];

for j from 1 to nops(T) do

W:=[op(W),T[j]=0]:

end do:

v:=solve(W,[x,y,z,w]);

## If the solution includes "w=0", then this data corresponds

## to the point scheme of Skly3.

--------------------------------------------------------

## for d1 = d2 = d3 = 0:

[x = RootOf(c _Z^3 a b + (-y a^3 z - y c^3 z - y b^3 z)_Z

+ a z^3 b c + y^3 b c a),

y = y, z = z, w = 0]

[x = 0, y = -z, z = z, w = 0]

[x = 0, y = RootOf(_Z^2 + 1 - _Z, label = _L1) z, z = z, w = 0]

[x = - z (c^3 e2^3 - {...} + e2 b^3 e3^2 %1) /
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(c^2 (e2^3 - e3^3 ) %1 (a + b)),

y = %1 z, z = z,

w = RootOf((e2^3 - e3^2 ) _Z^2 - {...} + %1^3 c^3 e3^2 ,

label = _L4) z/c]

%1 := RootOf((c e1 a^2 e2 + {...} - a^3 e2^2) _Z^3 ,

label = _L2)

Thus in the case di = 0, the cardinality of the set S is 1. In fact,

S = �� c3 + {...}
c2(e3

2

− {...}) ∶ R ∶ 1 ∶ �e3
2

+ {...}��
where R is the “Rootof” expression above.

------------------------------------------------------------

## for e1 = e2 = e3 = 0:

[x = RootOf(c _Z^3 a b + (-y b^3 z - y a^3 z - y c^3 z) _Z

+ y^3 b c a + a b z^3 c),

y = y, z = z, w = 0]

[x = 0, y = -z, z = z, w = 0]

[x = 0, y = RootOf(_Z^2 + 1 - _Z, label = _L1) z, z = z, w = 0]

[x = 0, y = - d2 w / c, z = 0, w = w]

[x = 0, y = 0, z = 0, w = w]

[x = - d1 w / c, y = 0, z = 0, w = w]

[x = 0, y = 0, z = z, w = - c z / d3]

[x = %1 z c (-d2 + %1 d3) / (d2 %1^2 - d3) (a + b),
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y = %1 z, z = z, w = - z (%1^3 - 1) c / d2 %1^2 - d3]

%1 := RootOf((a^3 d2^2 + {...} - c^2 a d1 d3) _Z^4 {...}

+ (c^2 b d1 d2 + c^2 a d1 d2 + c^3 d3^2 ) _Z^3 , label = _L2)

Thus in the case where ei = 0, the cardinality of the set S is 5. In fact,

S = �[0 ∶ 0 ∶ 0 ∶ 1], �−d1
c
∶ 0 ∶ 0 ∶ 1� , �0 ∶ −d2

c
∶ 0 ∶ 1� , �0 ∶ 0 ∶ −d3

c
∶ 1� ,

� Rc(−d
2

+Rd
3

)(d
2

R2 − d
3

)(a + b) ∶ R ∶ 1 ∶ (R3 − 1)c
d
2

R2 − d
3

��
where R is the “Rootof” expression above.

------------------------------------------------------------

## for d2 = d3 = e2 = e3 = 0:

v := [[x = RootOf(c _Z^3 b + (-b^3 y z - y z - c^3 y z) _Z

+ b y^3 c + b z^3 c),

y = y, z = z, w = 0],

[x = 0, y = -z, z = z, w = 0],

[x= 0, y = RootOf(_Z^2 + 1 - _Z, label = _L1) z, z= z, w= 0],

[x= x, y=0, z=0, w= RootOf(e1 _Z^2 + c + _Z d1, label= _L2)x],

[x = x, y = - x (b + 1) /c, z = - x (b + 1) /c,

w = RootOf(e1 _Z^2 + {...} + d1c _Z, label = _L4) x /c],

[x =((b^3 + {...} + 1) c z) /((%1 b e1 + {...} + c d1) %1),
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y = - (e1 %1 + c d1) z %1 / (b^3 + {...} + 1),

z = z, w = %1 z / (b+1)]]

%1 := RootOf(e1^2 _Z^4 + {...} + _Z^3 c d1 e1, label = _L6)

Thus in the case where d
2

= d
3

= e
2

= e
3

= 0, the cardinality of the set S is 3. We can

interpret the points of S as in the previous cases.

Routine A.6. We verify the construction of the rank two tensors of

D(1, b, c, d
1

, d
2

, d
3

, e
1

, e
2

, e
3

) (and hence of D(1,1, c, d
1

, d
2

, d
3

, e
1

, e
2

, e
3

)
used in the proof of Lemma V.18 (and Lemma V.27) in 5.4.

### AFFINE ###

## Define the algebra D(1,b,c,d_1,d_2,d_3,e_1,e_2,e_3)

declare(c,constant,d1,constant,d2,constant,d3,constant,

e1,constant,e2,constant,e3,constant);

declare_weights(x,1,y,1,z,1,w,1);

ALL_DOTSIMP_DENOMS:[];

r1:y.z+b*z.y+c*x.x+d1*x.w+e1*w.w;

r2:z.x+b*x.z+c*y.y+d2*y.w+e2*w.w;

r3:x.y+b*y.x+c*z.z+d3*z.w+e3*w.w;

r4:x.w-w.x; r5:y.w-w.y; r6:z.w-w.z;

set_up_dot_simplifications([r1,r2,r3,r4,r5,r6],7);

y n n n [x,y,z,w];

## Define the rank two tensor expressions au-bv

declare(b1,constant,u2,constant,u3,constant,u4,constant,
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v1,constant,v4,constant);

a1: b1*v1; a2: v1*b1*u2; a3: b1*v1*u3; a4: v4*b1;

b2: b1*u2; b3: b1*u3; b4: b1*u4;

u1: 1; v2: u2*v1; v3: v1*u3;

r: a1*x+a2*y+a3*z+a4*w; s: b1*x+b2*y+b3*z+b4*w;

u: u1*x+u2*y+u3*z+u4*w; v: v1*x+v2*y+v3*z+v4*w;

## Verify that ru-sv in the ideal of relations of D

dotsimp(r.u-s.v);

(D28) 0

Routine A.7. For D with ��� = 2, we compute central annihilators for the line

modules Ml =D�Du +Dv given in Lemma V.27. This result is used for the proof of

Lemma V.28 in 5.4. In particular, we need scalars aij so that:

fi = ai1x + ai2y + ai3z + ai4w for i = 1,2, and;
f
1

u + f
2

v = ↵w2 + �ĝ
2

for some [↵ ∶ �] ∈ P1;

where ĝ
2

is the degree 2 central element of D not in k[w2]. As mentioned in the

proof of Lemma V.28, we assume that [↵ ∶ �] = [� ∶ 1] for � ∈ k.
### AFFINE ###

## Define and simplify the expression f1*u + f2*v.

declare(a11,constant,a12,constant,a13,constant,a14,constant,

a21,constant,a22,constant,a23,constant,a24,constant);

f1:a11*x+a12*y+a13*z+a14*w;

f2:a21*x+a22*y+a23*z+a24*w;
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declare(u2,constant,u3,constant,u4,constant,v1,constant,v4,constant);

u1: 1; v2: u2*v1; v3: v1*u3;

u: u1*x+u2*y+u3*z+u4*w;

v: v1*x+v2*y+v3*z+v4*w;

dotsimp(f1.u+f2.v);

/R/ (((a22 C u3 - a23 C u2) v1 + a12 C u3 - a13 C u2) (Y . z)

+ ((a22 C u2 - a23 C^2 ) v1 + a12 C u2 - a13 C^2 ) (Y . Y)

+ ((- a23 u3 + a22 C) v1 - a13 u3 + a12 C) (Y . X)

+ ((a21 C u3 - a23 C) v1 + a11 C u3 - a13 C) (X . z)

+ ((- a23 u3 + a21 C u2) v1 - a13 u3 + a11 C u2) (X . Y)

+ ((- a23 C^2 u2 + a21 C) v1 - a13 C^2 u2 + a11 C) (X . X)

+ (a23 C v4 + (- a23 d3 + a24 C) u3 v1 + a13 C u4

+ (- a13 d3 + a14 C) u3) (w . z)

+ (a22 C v4 + (a24 C u2 - a23 C d2) v1 + a12 C u4 + a14 C u2

- a13 C d2) (w . Y)

+ (a21 C v4 + (- a23 C d1 u2 + a24 C) v1 + a11 C u4

- a13 C d1 u2 + a14 C) (w . X)

+ (a24 C v4 + (- a23 e3 u3 - a23 C e1 u2 - a23 C e2) v1 +

a14 C u4 - a13 e3 u3 - a13 C e1 u2 - a13 C e2) (w . w))/C

### MAPLE ###

## We extract the coefficients of the simplified expression

## f1*u + f2*v. Call such coefficients "annrel**".

annrelyz:=(1/c)*((a22*c*u3 - a23*c*u2)*v1 + a12*c*u3 - a13*c*u2);

annrelyy:=(1/c)*((a22*c*u2 - a23*c^2)*v1 + a12*c*u2 - a13*c^2);
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annrelyx:=(1/c)*((-a23*u3 + a22*c)*v1 - a13*u3 + a12*c);

annrelxz:=(1/c)*((a21*c*u3 - a23*c)*v1 + a11*c*u3 - a13*c);

annrelxy:=(1/c)*((-a23*u3 + a21*c*u2)*v1 - a13*u3 + a11*c*u2);

annrelxx:=(1/c)*((-a23*c^2*u2 + a21*c)*v1 - a13*c^2*u2 + a11*c);

annrelwz:=(1/c)*(a23*c*v4 + (-a23*d3 + a24*c)*u3*v1 + a13*c*u4

+ (- a13*d3 + a14*c)*u3);

annrelwy:=(1/c)*(a22*c*v4 + (a24*c*u2 - a23*c*d2)*v1 + a12*c*u4

+ a14*c*u2 - a13*c*d2);

annrelwx:=(1/c)*(a21*c*v4 + (-a23*c*d1*u2 + a24*c)*v1 + a11*c*u4

- a13*c*d1*u2 + a14*c);

annrelww:=(1/c)*(a24*c*v4 + (-a23*e3*u3 - a23*c*e1*u2 - a23*c*e2)*v1

+ a14*c*u4 - a13*e3*u3 - a13*c*e1*u2 - a13*c*e2);

## Now considering the coefficients of the central element \hat{g2},

## we solve for the a(ij).

## Note that to get a solution, we must also solve for u2 and u3.

v:=solve({annrelyz=0,annrelyy=(c^4-c)*d2,annrelyx=(-c^3+1)*d3,

annrelxz=0,annrelxy=(-c^3+1)*d3,annrelxx=(c^4-c)*d1,

annrelwz=d3^2-c^2*d1*d2,annrelwy=-c^2*d1*d3 + c^3*d2^2,

annrelwx=-c^2*d2*d3 + c^3*d1^2},

[a11,a12,a13,a14,a21,a22,a23,a24,u2,u3]);

## We get one long solution, v.

> nops(v);

1
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## Set the a(ij) equal to the corresponding solutions of v[1][k].

a11:= rhs(v[1][1]); a12:= rhs(v[1][2]);

a13:= rhs(v[1][3]); a14:= rhs(v[1][4]);

a21:= rhs(v[1][5]); a22:= rhs(v[1][6]);

a23:= rhs(v[1][7]); a24:= rhs(v[1][8]);

u2:= rhs(v[1][9]); u3:= rhs(v[1][10]);

## Now gamma equals the following:

annrelww:=(1/c)*(a24*c*v4 + (-a23*e3*u3 - a23*c*e1*u2 - a23*c*e2)*v1

+ a14*c*u4 - a13*e3*u3 - a13*c*e1*u2 - a13*c*e2);

gamma:= simplify(annrelww);

## This is a long expression, and it is dependent on u4, v1, v4.
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