Singularities of special Lagrangian submanifolds and SYZ

Dominic Joyce Oxford University based on math.DG/0310460 math.DG/0206016 math.DG/0011179 and references in these Almost Calabi-Yau *m*-folds An almost Calabi-Yau m-fold (M, J, q, Ω) is a compact complex *m*-fold (M, J) with a Kähler metric g with Kähler form ω , and a nonvanishing holomorphic (m, 0)-form Ω , the holomorphic volume form. It is a Calabi-Yau m-fold if $|\Omega|^2 \equiv 2^m$. Then $\nabla \Omega = 0$ and q is Ricci-flat.

Special Lagrangian *m*-folds Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real *m*-submanifold of M. We call N special Lagrangian (SL) if $\omega|_N \equiv \text{Im } \Omega|_N \equiv 0$. If (M, J, q, Ω) is a Calabi-Yau *m*-fold then $\operatorname{Re}\Omega$ is a *calibra*tion on (M, q), and N is an SL m-fold iff it is calibrated with respect to $\operatorname{Re}\Omega$.

Singular SL *m*-folds

General singularities of SL mfolds may be very bad, and difficult to study. Would like a class of singular SL *m*-folds with nice, well-behaved singularities to study in depth. Would like these to occur often in real life, i.e. of finite codimension in the space of all SL *m*-folds. SL *m*-folds with isolated conical singularities (ICS) are such a class.

Let N be an SL m-fold in Mwhose only singular points are x_1, \ldots, x_n . Near x_i we can identify M with $\mathbb{C}^m \cong T_{x_i}M$, and N near x_i approximates an SL *m*-fold in \mathbb{C}^m with singularity at 0. We say N has isolated conical singularities if near x_i it converges with order $O(r^{\mu_i})$ for $\mu_i > 1$ to an SL cone C_i in \mathbb{C}^m nonsingular except at 0.

SL m-folds with ICS have a rich theory.

- Examples. Many examples of SL cones C_i in \mathbb{C}^m have been constructed. Rudiments of classification for m = 3.
- Regularity near x_1, \ldots, x_n . Let $\iota : N \to M$ be the inclusion. If $\nabla^k \iota$ converges to C_i near x_i with order $O(r^{\mu_i - k})$ for k = 0, 1 then it does so for all $k \ge 0$.

 Deformation theory. The moduli space \mathcal{M}_N of deformations of N is locally homeomorphic to $\Phi^{-1}(0)$, for smooth Φ : $\mathcal{I} \rightarrow \mathcal{O}$ and fin. dim. vector spaces \mathcal{I}, \mathcal{O} with \mathcal{I} the image of $H^1_{CS}(N',\mathbb{R})$ in $H^1(N',\mathbb{R}), N'=N\setminus\{x_1,\ldots,x_n\},\$ and dim $\mathcal{O} = \sum_{i=1}^{n} \text{s-ind}(C_i)$. Here s-ind(C_i) $\in \mathbb{N}$ is the *stability index*, the obstructions from C_i . If s-ind $(C_i) = 0$ for all i then \mathcal{M}_N is smooth.

Desingularization. Let C be an SL cone in \mathbb{C}^m , nonsingular except at 0. A nonsingular SL *m*-fold L in \mathbb{C}^m is Asymptotically Conical (AC) C if L converges to C at infinity with order $O(r^{\lambda})$ for $\lambda < 1$. Then tL converges to C as $t \rightarrow 0_+$. Thus, AC SL *m*folds model how families of nonsingular SL m-folds develop singularities modelled on C.

If N is an SL m-fold with ICS at x_1, \ldots, x_n and cones C_i , and L_1, \ldots, L_n are AC SL *m*-folds in \mathbb{C}^m with cones C_i , then under cohomological conditions we can construct a family of compact nonsingular SL mfolds \tilde{N}_t for small t > 0 converging to N as $t \rightarrow 0$, by gluing tL_i into N at x_i , all i.

Generic codimension of singularities. Given an SL *m*-fold N with ICS in M, we have moduli spaces \mathcal{M}_N of deformations of N, and $\mathcal{M}_{\tilde{N}}$ of desingularizations \tilde{N} of N made by gluing in L_1, \ldots, L_n . Here \mathcal{M}_N is part of the *bound*ary of $\mathcal{M}_{\tilde{N}}$. If M is a generic almost C-Y *m*-fold then \mathcal{M}_N , $\mathcal{M}_{\widetilde{N}}$ are smooth with known dimension.

Call dim $\mathcal{M}_{\tilde{N}}$ -dim \mathcal{M}_N the *in*dex of the singularities of N. It is the sum over i of s-ind(C_i) and topological terms from L_i . In a dim k family \mathcal{B} of SL mfolds in a generic almost C-Y *m*-fold M, only singularities with index $\leq k$ occur. For SYZ in generic M we need to know about singularities with index 1,2,3 (and 4). **Problem:** classify singularities with small index.

Mirror Symmetry

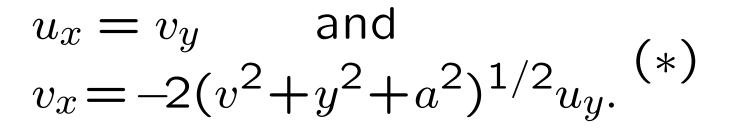
String theorists believe that each Calabi–Yau 3-fold X has a quantization, a SCFT. Calabi–Yau 3-folds X, \hat{X} are a mirror pair if their SCFT's are related by a certain involution of SCFT structure. Then invariants of X, \hat{X} are related in surprising ways. For instance, $H^{1,1}(X) \cong H^{2,1}(\hat{X})$ and $H^{2,1}(X) \cong H^{1,1}(\hat{X}).$

Using physics, Strominger, Yau and Zaslow proposed: The SYZ Conjecture. Let X, \hat{X} be mirror Calabi–Yau 3-folds. There is a compact 3-manifold B and continuous, surjective $f: X \to B$ and $\widehat{f}:\widehat{X}\to B$, such that (i) For b in a dense $B_0 \subset B$, the fibres $f^{-1}(b), \hat{f}^{-1}(b)$ are dual SL 3-tori T^3 in X, \hat{X} . (ii) For $b \notin B_0$, $f^{-1}(b)$ and $\hat{f}^{-1}(b)$ are singular SL 3-folds in X, \hat{X} .

We call f, \hat{f} special Lagrangian fibrations, and $\Delta = B \setminus B_0$ the discriminant.

In (i), the nonsingular fibres T, \widehat{T} of f, \widehat{f} are supposed to be dual tori. Topologically, this means an isomorphism $H^1(T,\mathbb{Z})\cong H_1(\widehat{T},\mathbb{Z})$. But the metrics on T, \hat{T} should really be dual as well. This only makes sense in the 'large complex structure limit', when the fibres are small and nearly flat.

U(1)-invariant SL 3-folds Let U(1) act on \mathbb{C}^3 by $(z_1, z_2, z_3) \mapsto (e^{i\theta}z_1, e^{-i\theta}z_2, z_3).$ Let N be a U(1)-invariant SL 3-fold. Then locally we can write N in the form $\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a,$ $z_1 z_2 = v(x, y) + iy$ $z_3 = x + iu(x, y), x, y \in \mathbb{R}$ where $u, v : \mathbb{R}^2 \to \mathbb{R}$ satisfy



Since $u_x = v_y$, there exists a potential function f with $u = f_y$ and $v = f_x$. The 2nd equation of (*) becomes

$$f_{xx} + 2(f_x^2 + y^2 + a^2)^{1/2} f_{yy} = 0.$$
(+)

This is a second-order quasilinear equation. When $a \neq 0$ it is locally uniformly elliptic. When a=0 it is non-uniformly elliptic, except at *singular points* $f_x = y = 0$. **Theorem A.** Let S be a compact domain in \mathbb{R}^2 satisfying some convexity conditions. Let $\phi \in C^{3,\alpha}(\partial S)$.

If $a \neq 0$ there exists a unique $f \in C^{3,\alpha}(S)$ satisfying (+) with $f|_{\partial S} = \phi$. If a = 0 there exists a unique $f \in C^1(S)$ satisfying (+) with weak second derivatives, with $f|_{\partial S} = \phi$. Also f depends continuously in $C^1(S)$ on a, ϕ .

Theorem A shows that the Dirichlet problem for (+) is uniquely solvable in certain convex domains. The induced solutions $u, v \in C^0(S)$ of (*)yield U(1)-invariant SL 3-folds in \mathbb{C}^3 satisfying certain boundary conditions over ∂S . When $a \neq 0$ these SL 3-folds are nonsingular, when a = 0 they are singular when v = y = 0.

Theorem B.

Let $\phi, \phi' \in C^{3,\alpha}(\partial S)$, let $a \in \mathbb{R}$ and let $f, f' \in C^{3,\alpha}(S)$ or $C^1(S)$ be the solutions of (+) from Theorem A with

 $f|_{\partial S} = \phi, f'|_{\partial S} = \phi'$. Let $u = f_y, v = f_x, u' = f'_y, v' = f'_x$. Suppose $\phi - \phi'$ has k+1 local maxima and k+1 local minima on ∂S . Then (u, v) - (u', v')has no more than k zeroes in S° , counted with multiplicity.

Theorem C. Let $u, v \in C^0(S)$ be a singular solution of (*) with a = 0, e.g. from Theorem A. Then either $u(x,y) \equiv u(x,-y)$ and $v(x,y) \equiv -v(x,-y)$, so that u, v is singular on the x-axis, or the singularities (x,0) of u, v in S° are *isolated*, with a *multiplicity* n > 0. Multiplicity n singularities occur in codimension n of boundary data. All multiplicities occur.

Theorem D. Let $U \subset \mathbb{R}^3$ be open, S as above, and $\Phi: U \to C^{3,\alpha}(\partial S)$ continuous such that if $(a, b, c) \neq (a, b', c') \in U$ then $\Phi(a, b, c) - \Phi(a, b', c')$ has 1 local maximum and 1 local minimum. For $\alpha = (a, b, c) \in U$, let $f_{\alpha} \in C^{1}(S)$ be the solution of (+) from Theorem A with $f_{\alpha}|_{\partial S} = \Phi(\alpha)$.

Set $u_{\alpha} = (f_{\alpha})_y$ and $v_{\alpha} = (f_{\alpha})_x$. Let N_{α} be the SL 3-fold $\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a,$ $z_1 z_2 = v_\alpha(x, y) + iy$ $z_3 = x + iu_\alpha(x, y), (x, y) \in S^\circ$ Then there exists an open $V \subset \mathbb{C}^3$ and a continuous map $F: V \rightarrow U$ with $F^{-1}(\alpha) = N_{\alpha}$. This is a U(1)-invariant special Lagrangian fibration. It can include *singular fibres*, of every multiplicity n > 0.

Example. Define $f : \mathbb{C}^3 \to \mathbb{R} \times \mathbb{C}$ by $f(z_1, z_2, z_3) = (a, b)$, where $2a = |z_1|^2 - |z_2|^2$ and

$$b = \begin{cases} z_3, & z_1 = z_2 = 0, \\ z_3 + \bar{z}_1 \bar{z}_2 / |z_1|, a \ge 0, \ z_1 \neq 0, \\ z_3 + \bar{z}_1 \bar{z}_2 / |z_2|, a < 0. \end{cases}$$

Then f is a piecewise-smooth SL fibration of \mathbb{C}^3 . It is not smooth on $|z_1| = |z_2|$. The fibres $f^{-1}(a,b)$ are T^2 cones when a = 0, and nonsingular $S^1 \times \mathbb{R}^2$ when $a \neq 0$.

Conclusions

Using these SL fibrations as local models, if X is a *generic* ACY 3-fold and $f: X \rightarrow B$ an SL fibration, I predict:

- f is only piecewise smooth.
- All fibres have finitely many singular points.
- Δ is codim 1 in *B*. Generic singularities are modelled on the example above.
- Some codim 2 singularities are also locally U(1)-invariant.

 Codim 3 singularities are not locally U(1)-invariant.

• If $f: X \to B$, $\hat{f}: \hat{X} \to B$ are dual SL fibrations of mirror C-Y 3-folds, the discriminants $\Delta, \hat{\Delta}$ have different topology near codim 3 singular fibres, so $\Delta \neq \hat{\Delta}$.

This contradicts some statements of the SYZ Conjecture.

I regard SYZ as primarily a limiting statement about the

'large complex structure limit'.