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Angela Gibney

1 Introduction

In these notes, I discuss a class of vector bundles on the moduli space of curves that are
defined using representation theory. As I’ll motivate and explain, my hope is that these
bundles can help us answer some very basic open questions about Mg,n. I’ll also tell you
about a problem that we were able to answer about the fibers of the bundles using the
moduli space of curves.

In Section 4, I discuss three related open problems.

2 The moduli space of curves

For the purpose of the talk, we consider the moduli space of curves as a projective vari-
ety, whose (closed) points correspond to (isomorphism classes) of stable n-pointed curves
x “ pC; p1, . . . , pnq of genus g. In particular, C has at worst simple nodal singularities, the
marked points pi are smooth points of C, and there are a finite number of automorphisms
of x. It can be profitable to consider the stackMg,n, and we briefly discuss this functorial
point of view, and how one is led to pointed curves, even if mainly interested in smooth
curves of genus g, in Section 5.

There are good reasons that the moduli space of curves is a widely studied object in
algebraic geometry and related fields.

For instance

• it tells one about smooth curves and how they degenerate;
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• it has emerged as somewhat of a prototype for what one may want to achieve when
constructing a moduli space, guiding study of moduli spaces of higher dimensional
varieties and of other objects such as sheaves of various sorts;

• because Sn acts on Mg,n by permuting the marked points, it has a combinatorial
structure, which has the feel of a homogeneous variety.

This last feature, the combinatorial structure of Mg,n, often allows one to reduce problems
for moduli of higher genus curves to M0,n. But still very basic open questions remain. I’ll
illustrate this with the example about cones of nef divisors.

Definition 2.1. A divisor D on a projective variety X is nef if D ¨ C ě 0 for all curves C on X.

Examples of nef divisors include f ˚OYp1q for any morphism f : X Ñ Y, where Y is a
projective variety.

Definition 2.2. NefpXq “ t nef divisors on Xu.

The set NefpXq is a cone, an invariant of X that tells us about morphisms from X to
other projective varieties.

The first and most basic open question one can ask about NefpXq is whether or not it is
polyhedral. If yes, then the idea would be that one could identify all the maps admitted
by the variety. If no, then maybe that would be too hard to do.

Nef cones of complete toric varieties are polyhedral. So one might expect this for
varieties that are similar to toric varieties.

It is known that NefpM0,nq is polyhedral for n ď 7 [KM13], and NefpMgq is polyhedral
for g ď 24 [Gib09]. There is a conjecture that would imply polyhedrality of the nef cone
Mg,n. If the conjecture holds for g “ 0 and all n then it holds for Mg,n.

I give the details of this conjecture in my notes.
We set:

δk
pMg,nq “ tpC, ~pq P Mg,n : C has at least k nodes u

In honor of Faber and Fulton, the numerical equivalence classes of the irreducible
components of δ3g´4`npMg,nq are called F-Curves. One can ask the following question:

Conjecture 2.3. [GKM02] A divisor on Mg,n is nef, if and only if it nonnegatively intersects all
the F-Curves.

In [GKM02], we showed that in fact a positive solution to this question for Sg-invariant
nef divisors on M0,g`n would give a positive answer for divisors on Mg,n. In particular, the
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birational geometry of M0,g controls aspects of the birational geometry of Mg. We know
now that the answer to this question is true on M0,n for n ď 7 [KM13], and on Mg for
g ď 24 [Gib09].

For the purpose of this talk, this example tells us that it is worthwhile studying nef
divisors on M0,n even if we are interested in the general story. Vector bundles of covacua
for affine Lie algebras give rise to elements of the cone of nef divisors: each bundle on M0,n

is globally generated, and so has base point free first Chern class (ie. is of the form f ˚A
for some morphism f : M0,n Ñ Y where Y is a projective variety, and A is an ample line
bundle on it). Fakhruddin proved that the set of first Chern classes for positive rank level
one bundles for sl2 gives a basis for the Picard group of M0,n, and so even in the simplest
case, we get a full dimensional sub-cone of the nef cone.

3 Vector bundles for affine Lie algebras

As I will outline below, given a simple Lie algebra g, a positive integer `, and an n-tuple
~λ “ pλ1, . . . , λnq of dominant integral weights for g at level `1, one can construct a vector
space associated to a stable n-pointed curve pC; p1, . . . , pnq of genus g. These vector spaces
fit together to form a a vector bundle Vpg, ~λ, `q on the moduli space Mg,n.

For references for these bundles defined using affine Lie algebras, see [TUY89,?Ueno,
Bea96] and [Fak12]. A broader picture exists for conformal vertex operator algebras, as
described in the book of Frenkel and Ben-Zvi [BzF01]. In case those CVOAs are regular
chiral algebras, in [NT05], Nagatomo and Tsuchiya proved they satisfy “Factorization”
and “Propagation of Vacua”, two important properties satisfied by the vector bundles I’m
talking about today.

3.1 Description of the fibers

3.1.1 Finite dimensional situation:

First we suppose that C is a smooth curve of genus g with at least one marked point.
We’ll take care of the other cases at the end.

Recall that to λi there corresponds a unique finite dimensional g-module Vλi . Set

1We say for λi P P`pgq.
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V~λ “ Vλ1 b ¨ ¨ ¨Vλn and define an action

gˆ V~λ Ñ V~λ pg, v1 b ¨ ¨ ¨ vnq ÞÑ

n
ÿ

i“1

v1 b ¨ ¨ ¨ vi´1 b pg ¨ viq b vi`1 b ¨ ¨ ¨ vn.

We write rV~λsg for the space of coinvariants of V~λ: The largest quotient of V~λ on which
g acts trivially. That is, the quotient of V~λ by the subspace spanned by the vectors X ¨v
where X P g and v P V~λ.

Let V and W be two a-modules. The space of coinvariants rVbWsg is equal to the
quotient of VbW by the subspace spanned by the elements of the form

X vb w` vb X w,

where X P g, v P V, and w P W.

3.1.2 Infinite dimensional analogues:

Given a smooth n-pointed curve pC, ~pq, to construct the fiber Vpg, ~λ, `q|pC,~p we will use
two new Lie algebras:

First, for each i P t1, . . .uwe will use

ĝi “ gb Cppξiqq ‘ C ¨ c,

where by Cppξiqq, we mean the field of Laurant power series over C in the variable ξi, and
c is in the center of ĝi. To define the bracket, we note that elements in ĝi are tuples pai, αcq,
with ai “

ř

j Xi jb fi j, with fi j P Cppξiqq. We define the bracket on simple tensors:

rpXb f , αcq, pYb g, βcqs “ prX,Ys b f g, cpX,Yq ¨ Resξi“0pgpξiqd f pξiqqq.

Checking ĝi is a Lie algebra done in Section 6, where we also outline the construction
of the infinite dimensional analogue Hλi of Vλi : It turns out that Hλi is a unique ĝi-module,
although infinite dimensional.

Now for the second Lie algebra:
Let U “ C ztp1, . . . , pnu. Because C is smooth, and has at least one marked point, U is

affine By gpUqwe mean the Lie algebra gb OCpUq.
Choose a local coordinate ξi at each point pi, and denote by fpi the Laurant expansion

of any element f P OCpUq. Then for each i, we get a ring homomorphism

OCpUq Ñ Cppξiqq, f ÞÑ fpi ,
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and hence for each i, we obtain a map (this is not a Lie algebra embedding)

gpUq Ñ ĝi Xb f ÞÑ pXb fpi , 0q.

Set H~λ “ Hλ1 b ¨ ¨ ¨Hλn and define the following, which we will show is an action:

(1) gpUq ˆH~λ Ñ H~λ pg,w1 b ¨ ¨ ¨wnq ÞÑ

n
ÿ

i“1

w1 b ¨ ¨ ¨wi´1 b pg ¨ wiq b wi`1 b ¨ ¨ ¨wn.

Claim 3.1. Equation 1 defines an action of gpUq on H~λ.

Proof. Given Xb f , and Yb g P gpUq, and a simple tensor v “ v1 b ¨ ¨ ¨ b vn P H~λ, we want
to check that

rX b f ,Y b gs ¨ v “ pX b f q ¨
`

pY b gq ¨ v
˘

´ pY b gq ¨
`

pX b f q ¨ v
˘

.

The right hand side simplifies as follows:

(2) pX b f q ¨
`

pY b gq ¨ v
˘

´ pY b gq ¨
`

pX b f q ¨ v
˘

“ pX b f q ¨
´

n
ÿ

i“1

v1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

´ pY b gq ¨
´

n
ÿ

i“1

v1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn
1ď jďn

v1 b ¨ ¨ ¨ v j´1 b pX b fp jq ¨ v j b v j`1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

´

´

ÿ

1ďiďn
1ď jďn

v1 b ¨ ¨ ¨ v j´1 b pY b gp jq ¨ v j b v j`1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨
`

pY b gpiq ¨ vi
˘

b vi`1 b ¨ ¨ ¨ b vn

¯

´

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨
`

pX b fpiq ¨ vi
˘

b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b
`

rX,Ys ` p f gqpi

˘

¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

The left hand side simplifies as follows:

(3)
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

rX,Ys b fpi gpi ` pX,YqResξi“0 gpid fpic
¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn

“
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

rX,Ys b fpi gpi

¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn

`
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

pX,YqResξi“0 gpid fpic
¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn.
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Now, by definition, c ¨ vi “ ` ¨ vi for all i, and so we can rewrite the second summand as
follows

(4)
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b ppX,YqResξi“0 gpid fpicq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

“
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

´

v1 b ¨ ¨ ¨ b vi´1 b c ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

´

v1 b ¨ ¨ ¨ b vi´1 b ` ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“
`

`
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

˘

´

v1 b ¨ ¨ ¨ b vn

¯

.

Since
ř

1ďiďnpX,YqResξi“0 gpid fpi “ 0, this contribution is zero. Therefore the left and right
hand sides of the expressions are the same, and we have checked that gpUq acts on H~λ as
claimed. �

We now set
Vpg, ~λ, `q|pC,~pq “ rH~λsgpUq.

Now if C is a smooth curve with no marked points, one can use Propagation of Vacua
(see Section 7) which says that Vpg, t0u, `q is isomorphic to the pullback of Vpg, `q, along
the map from Mg,1 to Mg given by dropping the marked point. We then construct the
fibers on Mg,1 with the zero weight. If C is a stable curve then one normalizes it at the
nodes and uses “Factorization” to construct the fibers (see Section 7).

3.2 A geometric description of the fibers at smooth curves

This result can be said very generally, but for the purposes of the talk, and to avoid a
lot of notation I will state it for bundles in type A on Mg:

Theorem 3.2. [BL94, Fal94, KNR94] For rCs P Mg,

à

mPZ
Vpslr, `mq|˚rCs –

à

mPZ
H0
pMCprq,ACprq`mq,

where MCprq is the moduli space of semi-stable vector bundles on C of rank r with trivializable
determinant, and A is an ample line bundle on it.

So in particular,
Projp

à

mPZ
Vpslr, `mq|˚rCsq – MCprq,
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and one says the bundle Vpslr, `q has a geometric interpretation at the point rCs P Mg. In
fact, Laszlo and Sorger in [LS97], showed that such geometric interpretations for Vpg, ~λ, `q
exist at points represented by stable pointed curves pC; p1, . . . , pnq, as long as C is smooth.

Question 3.3. Do such geometric interpretations for Vpg, ~λ, `q exist at points represented by
stable pointed curves pC; p1, . . . , pnq, where C has singularities?

We showed in [BGK15] that the answer is no, not necessarily!

Theorem 3.4. [BGK15]Let C be the singular curve of genus 2 with a single separating node.
There is no polarized pair pX,Aq such that

à

mPZ
Vpsl2,mq|˚rCs –

à

mPZ
H0
pX,Am

q,

To show this we prove that if V “ Vpsl2, 1q has geometric interpretation at all boundary
points on M2, then then

(5) c1pVrmsq “
ˆ

m` 3
4

˙

c1pVq “
pm` 3qpm` 2qpm` 1qm

24
¨ c1pVq

which we can show fails by intersecting with F-curves. There are two types of F-curves on
M2. The first is the image of a clutching map fromM0,4 for which points are identified in
pairs. The second is the image of a map fromM1,1 given by attaching a point pE, pq PM1,1,
gluing the curves at the marked points. One obtains a contradiction when we intersect
with either type of F-curve, even just at m “ 2.

We do know that sometimes there are geometric interpretations. Here are two types
of results along those lines:

Theorem 3.5. [BGK15]Geometric interpretations hold at all points for all bundles on Mg,n of rank
one.

While it is difficult to find bundles of rank one on Mg,n for positive genus g, Theorem
3.5 implies that bundles Vpslr, ~λ, 1q on M0,n have geometric interpretations at all points
x P M0,n.

Theorem 3.6. [BG16]Given rCs PMg, and a positive integer r, there exists a projective polarized
pair pXCpr, `q,LCpr, `qq, and a positive integer ` such that

(6)
à

mPZě0

Vpslr,m`q|˚rCs –
à

mPZě0

H0
pXCpr, `q,LCpr, `qbm

q.

We can be more precise about ` in some cases:
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1. For general r if C has only nonseparating nodes, ` ě 1;

2. For r “ 2, ` divisible by 2;

3. For general r, and C with separating nodes, we know such an ` exists.

4 Open problems

In my talk I mentioned three open problems about the moduli space of curves and
vector bundles of conformal blocks.

4.1 Global generation of vector bundles for regular VOAs

As I mentioned earlier, in [NT05] Nagatomo and Tsuchiya proved that the conformal
blocks that come from regular chiral vertex operator algebras in [NT05], they satisfy
“Factorization” and “Propagation of Vacua”.

One can ask whether these vector bundles are globally generated on M0,n.

4.2 The nef cone of M0,n and vector bundles of conformal blocks

Naturally one wonders how much of the nef cone is covered by first Chern classes of
vector bundles of conformal blocks. If the whole cone is covered, then every nef divisor is
semi-ample. But then one could hope that there would be an infinite number of extremal
rays, contradicting the F-Conjecture.

If the cone is covered by conformal blocks and there are just finitely many extremal
rays, then there must necessarily be a lot of identities between first Chern classes, or
vanishing results.

As an example of a type of identity, we have

Proposition 4.1. [BGM16] Suppose rkVg,~µ,` “ 1 and rkVg,~µ`~ν,``m “ rkVg,~ν,m “ δ. Then

c1pVg,~µ`~ν,``mq “ δc1pVg,~µ,`q ` c1pVg,~ν,mq.

4.3 The problem of nonvanishing

To describe the problem of non-vanishing, it helps first to know the vanishing results.
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4.3.1 Critical level vanishing and identities

The critical level, first defined by Fakhrudin [Fak12] for sl2, is defined only for g “
slr`1, while a similar concept called the theta level is defined for general Lie algebras g
[BGM15, BGM16]. As I will explain, the Chern classes of bundles are trivial if ` is above
the critical level. In terms of first Chern classes, it seems that very many conformal
blocks divisors are extremal in the nef cone, and the number of curves they contract
increases as the level increases with respect to the pair pg, ~λq. Moreover, sets of nontrivial
classes where the Lie algebra and the weights are fixed but the level varies, have been
shown to have interesting properties. For example on M0,n, where n “ 2pg ` 1q is even
tc1pVpsl2, ωn

1 , `qq : 1 ď ` ď g “ clppsl2, ωn
1qu, forms a basis of PicpM0,nq

Sn [?ags].

Definition 4.2. If r` 1 divides
řn

i“1 |λi|, we refer to

clpslr`1, ~λq “ ´1`
řn

i“1 |λi|

r` 1
,

as the critical level for the pair pslr`1, ~λq. If ` “ clpslr`1, ~λq, and if~λ P P`pslr`1q
n, thenVpslr`1, ~λ, `q

is called a critical level bundle, and c1pVpslr`1, ~λ, `qq “ Dpslr`1, ~λ, `q is called a critical level divisor.

Note that if ` “ clpslr`1, ~λq, then r “ clpsl``1, ~λTq, where ~λT “ pλT
1 , . . . , λ

T
nq. Here λT

i is
the weight associated to the transpose of the Young diagram associated to the weight λi.
In particular, |λi| “ |λT

i |, and so

n
ÿ

i“1

|λi| “ pr` 1qp` ` 1q “ p` ` 1qpr` 1q “
n
ÿ

i“1

|λT
i |.

In particular, critical level bundles come in pairs:
The following theorem was first proved by Fakhruddin for sl2 in [Fak12]:

Theorem 4.3. [Fak12, BGM15] If ` “ clpslr`1, ~λq, then

1. ckpVpslr`1, ~λ, ` ` cqq “ 0, for c ě 1; and

2. c1pVpslr`1, ~λ, `qq “ c1pVpsl``1, ~λT, rqq.

4.3.2 Examples

1. The bundle Vpslr`1, ωn
1 , `q is at the critical level for n “ pr ` 1qp` ` 1q. In [BGM15]

we showed that the first Chern classes are all nonzero, and by Theorem 4.3, for
n “ pr` 1qp` ` 1q,

c1pVpslr`1, ω
n
1 , `qq “ c1pVpsl``1, ω

n
1 , rqq; and
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c1pVpslr`1, ω
n
1 , ` ` cqq “ c1pVpsl``1, ω

n
1 , r` cqq “ 0 for all c ě 1.

2. The bundle Vpsl4, tω1, p2ω1 ` ω3q
3u, 3q is at the critical level, and its first Chern class

is self dual.

Remark 4.4. The main applications of vanishing above the critical level are extremality tests, and
criteria for showing that maps given by conformal blocks divisors factor through contraction maps
to Hassett spaces.

The bundle Vpsl4, tω2 ` ω3, ω1, ω1 ` 2ω2, 2ω1 ` ω3u, 3q is at the critical level, (and it is
below the theta level (which is 3.5)). The rank of Vsl4,tω1,p2ω1`ω3q3u,3 on M0,4 is one, while the
dimension of the vector space of coinvariants Asl4,tω1,p2ω1`ω3q3u is 2. A calculation shows
that Dsl4,tω1,p2ω1`ω3q3u,3 “ 0.

Examples like this have led us in [BGM16] to ask when divisors are nonzero.

Question 4.5. What are necessary and sufficient conditions for a triple pg, ~λ, `q that guarantee
that the associated conformal blocks divisor D

g,~λ,` is nonzero?

5 More on the moduli space

We start with the case where n “ 0, and by looking at the boundary of the moduli
space, see how stable pointed curves arise naturally.

5.1 Mg

Definition 5.1. A stable curve is a complete connected curve with only nodes as singularities
and only finitely many automorphisms.

Remark 5.2. In order for a curve to have a finite number of automorphisms, any rational component
must meet any other component of the curve in at least three points.

Definition 5.3. For g “ dim H1
pC,OCq ě 2, consider the contravariant functor:

Mg : pSchkq Ñ pSetsq, T ÞÑMgpTq,

whereMgpTq is the set of flat proper morphisms π : F Ñ T such that every fiber Ft is a stable
curve of genus g modulo isomorphism over T.

Theorem 5.4. [DM69]There exists a coarse moduli space Mg for the moduli functorMg; Moreover,
Mg is a projective variety that contains Mg as a dense open subset.
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Figure 1: Components of the boundary of Mg

5.2 The boundary of Mg

The boundary is a union of components:

MgzMg “ Y
t

g
2 u

i“0 ∆i,

• ∆0 is the closure of the locus of curves with a single non-separating node, and

• for i ą 0, ∆i is the closure of the locus of curves with a single separating node whose
normalization consists of a curve of genus i and a curve of genus g´ i.

5.3 Mg,n

As one can see in the images pictured in Figure 1, moduli of pointed curves come up
naturally even if one is only interested in studying Mg: Each component of the boundary
is the image of a morphism from a variety (or product of varieties) that (coarsely) represent
a more general moduli functor

Mg´1,2 � ∆0, and for 1 ď i ď t
g
2
u, Mi,1 ˆMg´i,1 � ∆i.

Definition 5.5. A stable n-pointed curve is a complete connected curve C that has only nodes
as singularities, together with an ordered collection p1, p2, . . ., pn P C of distinct smooth points of
C, such that the pn` 1q-tuple pC; p1, . . . , pnq has only a finite number of automorphisms.

Definition 5.6. For g “ 0, let n ě 3, and for g “ 1, let n ě 1:

Mg,n : pSchkq Ñ pSetsq, T ÞÑMg,npTq,

where Mg,npTq is the set of proper families pπ : X Ñ T; tσi : T Ñ Xun
i“1q such that the fiber

pXt, tσiptqun
i“1q, at every geometric point t P T is a stable n-pointed curve of genus g modulo

isomorphism over T.
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Theorem 5.7. [KM76, Knu83a, Knu83b] There exists a coarse moduli space Mg,n for the moduli
functorMg,n; it is a projective variety that contains Mg,n as a dense open subset. Moreover, M0,n

is a smooth projective variety that is a fine moduli space forM0,n.

When g “ 0, the moduli space M0,n represents the functor M0,n, and moreover it is
a smooth projective rational variety. Kapranov showed how to construct M0,n as both a
Chow and Hilbert quotient using Veronese curves, and alternatively as a Chow quotient
using the Grassmannian Gp2,nq. Keel gave an alternative blowup construction allowing
an explicit description for the Chow ring of M0,n. A third blowup construction was
given by Chen, Krashen and myself, which we generalized to a related moduli space Td,n

parametrizing n-pointed rooted trees of projective spaces of dimension d (T1,n – M0,n`1).

6 Just enough about the affine Lie algebra ĝ

In Section 6.1 we will define the bracket that gives ĝ the structure of a Lie algebra, and
in Section 6.2 we’ll define the ĝ-modules Hλ used in the definition of vector bundles of
conformal blocks.

6.1 The bracket on ĝ

Let ĝ “
`

g b Cppξqq
˘

‘ C ¨ c, where Cppξqq is the field of Laurant power series over C
in 1 variable, and c P g is in the center of ĝ. To define the bracket for ĝ, we set

rXb f pξq,Yb gpξqs “ rX,Ys b f pξqgpξq ` pX,Yq ¨ Respgpξqd f pξqq ¨ c,

where X, Y P g.
Typical elements in ĝ are of the form

řn
i“1 Xib fipξq ‘ λc, and

řn
j“1 Y jbg jpξq ‘ µc, so

using that rc, ˝s “ r˝, cs “ 0, for all ˝ P ĝ, since c is central in ĝ:

(7) r

n
ÿ

i“1

Xib fipξq ‘ λc,
n
ÿ

j“1

Y jbg jpξq ‘ µcs

“ r

n
ÿ

i“1

Xib fipξq,
n
ÿ

j“1

Y jbg jpξqs “
ÿ

i j

rXib fipξq,Y jbg jpξqs.

So the upshot is that we really only need to know that the given definition for
rXb f pξq,Ybgpξqs makes sense and is well defined. That is, we need to check anti-
symmetry and the Jacobi identity.

12



Claim 6.1. The proposed Lie bracket for ĝ satisfies the Jacobi identity:

(8) rrXb f pξq,Ybgpξqs,Zbhpξqs

“ rXb f pξq, rYbgpξq,Zbhpξqss ´ rYbgpξq, rXb f pξq,Zbhpξqss.

Proof. Using a bit of shorthand, we drop the variableξwriting g f 1 instead of Respgpξqd f pξqq,
we can express the left hand side of the equation as:

(9) rrX,Ys b f g‘
`

pX,Yqg f 1q
˘

c,Zbhs “ A`B,

where
A “ rrX,Ys,Zs b f gh, and B “

`

rX,Ys,Z
˘

hp f gq1c.

The right hand side of the equation can be written as:

(10) rXb f , rY,Zs b gh` pY,Zqg1h ¨ cs ´ rYbg, rX,Zs b f h` px,Zqh f 1cs

“ rX, rY,Zss b f gh‘ pX, rY,Zsq ¨ gh f 1 ¨ c

a rY, rX,Zss b g f h‘ pY, rX,Zsq ¨ f hg1 ¨ c “ A1
`B1,

where

A1
“ rX, rY,Zss b f gh, and B1 “

´

`

X, rY,Zs
˘

gh f 1 ´
`

Y, rX,Zs
˘

f hg1
¯

c.

One has that A “ A1 by the Jacobi identity for the Lie bracket for g, and so it remains to
check that B “ B1. Using the following three identities:

1. the product rule: p f gq1 “ f 1g` f g1;

2.
`

rX,Ys,Z
˘

“
`

X, rY,Zs
˘

(Lemma 6.2); and

3.
`

rX,Ys,Z
˘

“ ´
`

Y, rX,Zs
˘

(Lemma 6.3),

we write

(11) B “
`

rX,Ys,Z
˘

hp f gq1c

“
`

rX,Ys,Z
˘

h f 1gc`
`

rX,Ys,Z
˘

h f g1c

“
`

X, rY,Zs
˘

h f 1gc´
`

Y, rX,Zs
˘

h f g1c “ B1 .

�

The following identity is referred to as the Frobeneous property of the Killing form.
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Lemma 6.2.
`

rX,Ys,Z
˘

“
`

X, rY,Zs
˘

Proof. By definition of the Killing form, and using that Trace is invariant under cyclic
permutations (so Tracepabcq “ Tracepcabq), we write:

(12)
`

X, rY,Zs
˘

“ Trace
`

adpXq adpYq adpZq
˘

´ Trace
`

adpXq adpZq adpYq
˘

“ Trace
`

adpXq adpYq adpZq
˘

´ Trace
`

adpYq adpXq adpZq
˘

Trace
`

padpXq adpYq ´ adpYq adpXq adpZq
˘

“
`

rX,Ys,Z
˘

.

�

Lemma 6.3.
`

rX,Ys,Z
˘

“ ´
`

Y, rX,Zs
˘

Proof. For the left hand side of the equation, using the symmetry of the Killing form:

`

rX,Ys,Z
˘

“
`

Z, rX,Ys
˘

.

For the right hand side, using that the Lie bracket is antisymmetric, while the Killing form
is symmetric, we write:

´
`

Y, rX,Zs
˘

“
`

Y, rZ,Xs
˘

“
`

rZ,Xs,Y
˘

.

Now these are the same by Lemma 6.2:

`

rZ,Xs,Y
˘

“
`

Z, rX,Ys
˘

.

�

Claim 6.4. rXb f pξq,Xb f pξqs “ 0

Proof. Using that rX,Xs “ 0 since g is a Lie algebra, and it’s Lie bracket is of course
anti-symmetric, and moreover, since d

dξ
1
2 f 2 “ f pξq f 1pξqdξ. So

Resξ“0
` d

dξ
1
2

f 2
˘

“ Resξ“0
`

f pξq f 1pξqdξ
˘

“ 0.

We can then write

rXb f pξq,Xb f pξqs “
`

rX,Xs b f pξq ¨ f pξq
˘

‘ px, xqResξ“0
`

f pξq f 1pξqdξ
˘

“ 0.

�
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6.2 ĝmodules Mλ and Hλ

There is a bijection between the intersection W X ΛW of the Weyl chamber W and
the weight lattice ΛW and the set of irreducible representations for a given Lie algebra g.
Given λ PW XΛW, there is a corresponding finite irreducible representation Vλ for g. In
particular, Vλ is a g-module.

We are going to use Vλ to construct a representation Mλ for ĝ.
To construct Mλ, we use the following:

ĝ` “ gb Crrξssξ, and ĝ´ “ gb Crrξ´1
ssξ´1,

which we regard as Lie subalgebras of ĝ. One can show that

ĝ “ ĝ` ‘ g‘ C ¨ c‘ ĝ´.

We’ll also use the ”positive” Lie sub-algebra

p̂` “ ĝ` ‘ g‘ C ¨ c,

along with the universal enveloping algebrasUpĝq andUpp̂`q.

Definition 6.5. Mλ :“Upĝq b Upp̂`q Vλ.

Remark 6.6. Definition 6.5 makes sense: taking such a tensor product is legal:

1. If g1 is any subalgebra of a Lie algebra g2, then the inclusion g1 ãÑ g2 extends to a monomor-
phism Upg1q ãÑ Upg2q. Furthermore Upg2q is a free Upg1q module. So in particular, as
p̂` ãÑ ĝ, we have thatUpĝq is a freeUpp̂`q module.

2. Vλ is a p̂`-module. To see that this is true, note that since Vλ is a g-representation, there is
a Lie algebra homomorphism

gÑ EndpVλq.

Since p̂` “ ĝ` ‘ g‘ C ¨ c, we can let ĝ` act by zero and C ¨ c act by taking

C ¨ c Ñ EndpVλq, αc ÞÑ rVλ Ñ Vλ, v ÞÑ pα`qvs,

where here ` is the level.

Claim 6.7. Mλ is a representation for ĝ

15



Proof. To show that there is a Lie algebra morphism

ĝÑ EndpMλq,

we may show there is a map of associative algebras

Upĝq Ñ EndpMλq.

But by construction,Upĝq acts on the left of Mλ, and so this is true. �

Definition 6.8. We set Hλ “ Mλ { Iλ.

Since Upĝq is isomorphic, as a Upĝ´q-module to Upĝ´q bC Upp`q:

(13) ĝ “ gb Cppξqq ‘ C ¨ c “ gb
`

Crrξ´1
ssξ´1

bC Crrξssξ
˘

‘ C ¨ c

– gb Crrξ´1
ssξ´1

bC gb Crrξssξ‘ C ¨ c – ĝ´ bC p̂`.

So we can rewrite the module Mλ as:

Mλ – Upĝq bUpp̂`q Vλ – Upĝ´q bC Upp̂`q bUpp̂`q Vλ – Upĝ´q bC Vλ .

In particular, elements in Mλ :“ Upĝq b Upp̂`q Vλ look like elements v P Vλ times all the
negative stuff in ĝ.

With the notation above, Mλ contains a unique (see eg [TUY89,Bea96]) maximal proper
submodule Iλ generated by an element

Jλ “ pXθbξ
´1
i q

`´pθ,λq`1
b vλ P Mλ, and Iλ “ Upĝ´qJλ,

where here θ is the longest root, Xθ P g is the corresponding coroot, and vλ is the highest
weight vector associated to λ. We set

Hλ “ Mλ { Iλ .

We see that Hλ is a pg b Cppξqq ‘ Ccq-module. The subspace of Hλ annihilated by ĝ` is
isomorphic as a g-module to Vλ. So we identify Vλ with this subspace of Hλ annihilated
by ĝ`.

7 Factorization, propagation of vacua, and Beauville’s quo-
tient construction

Theorem 7.4, originally proved by Tsuchiya, Ueno and Yamada [TUY89, Prop 2.2.6],
explains how a vector bundle of conformal blocks at a point on the moduli space where

16



the underlying curve has a node, factors into sums and products of bundles on the
normalization of the curve where the sum is taken over all possible weights at points
over which the normalization is ”glued” to make the original curve. Applications of
Factorization include inductive formulas for the rank and Chern classes of the bundle.

These notes closely follow [TUY89, Prop 2.2.6], and [Bea96]. Examples from [BGM16]
are given.

7.1 Factorization

Definition 7.1. Given a weight µ P P`pgq, let µ‹ P P`pgq be the element with the property that
´µ‹ is the lowest weight of the weight space Vµ.

Example 7.2. If µ P P`psl2q, then µ‹ “ µ.

Example 7.3. For g “ slr`1 we express a weight λi as a sum λi “
řr

j“1 c jω j, and λi has a
corresponding Young diagram that fits into an pr` 1qˆ ` sized grid, where since λi is normalized,
the last row is empty. In terms of Young diagrams, the level is the number of “filled in” boxes across
the top, and |λi| means the total number of boxes “filled in” altogether. To find the Young diagram
corresponding to λ‹ we fill in the boxes in the diagram directly below the boxes corresponding to λ,
and then rotate by 180 degrees to get the Young diagram associated to the weight λ˚. For example,
if r ` 1 “ 4, and ` ě 5 for the weight λ pictured in white on the left below, then the dual weight
λ‹ is pictured in green on the right.

Figure 2

λ “ 3ω1 ` ω2 ` ω3

for sl4,
and level `pλq ě 5.

λ‹ “ ω1 ` ω2 ` 3ω3.

Theorem 7.4 (Factorization). Let pC0; p1, . . . , pnq be a stable n-pointed curve of genus g where
C0 has a node x0.

17



1. If xo is a non-separating node, ν : C Ñ C0 the normalization of C0 at x0, and ν´1px0q “

tx1, x2u, then

Vpg, ~λ, `q|pC0;~pq –
à

µPP`pgq

Vpg, ~λY µY µ‹u, `qpC;~pYtx1,x2uq.

2. If x0 is a separating node, ν : C1 Y C2 Ñ C0 the normalization of C0 at x0 and ν´1px0q “

tx1, x2u, with xi P Ci, then

(14) Vpg, ~λ, `q|pC0;~pq

–
à

µPP`pgq

Vpg, λpC1q Y tµu, `q|pC1;tpiPC1uYtx1uq b Vpg, λpC2q Y tµ
‹
u, `q|pC2;tpiPC2uYtx2uq,

where λpCiq “ tλ j|p j P Ciu.

Definition 7.5. The weights µ and µ˚ P P`pgq that occur in Theorem 7.4 are called the restriction
data for Vpg, ~λ, `q at the point pC0; ~pq.

Example 7.6. [BGM16] We will factorize the bundle Vpslr`1, tω1, ω1, p` ´ 1qω1 ` ωr, `ωru, `q

onM0,4 at the two types of points pC; p1, . . . , p4q, where the curve C has one node: the first type
X1 “ pC11YC12; p1, . . . , p4q where C11 is labeled by p1 and p2 and C12 by p3 and p4; and the second
type of curve X2 “ pC21 Y C22; p1, . . . , p4q where C21 is labeled by p1 and p3 and C22 by p3 and p4.

1. If r` 1 “ 2 this is Vpsl2, tω1, ω1, `ω1, `ω1u, `q, and we obtain:

Vpsl2, tω1, ω1, `ω1, `ωru, `q|X1

–
à

mě0
even

Vpsl2, tω1, ω1,mω1u, `q|pC11,p1,p2,x1q b Vpsl2, t`ω1, `ωr,mω1u, `q|pC12,p3,p4,x2q.

As we’ll see later, the only term in the sum above that gives bundles of nonzero rank occurs
when m “ 0, and that both bundles have rank one.

Vpsl2, tω1, ω1, `ω1, `ωru, `q|X2

–
à

mě0
m``”1pmod 2q

Vpsl2, tω1, `ω1,mω1u, `q|pC21,p1,p3,x1qbVpsl2, tω1, `ω1,mω1u, `q|pC22,p2,p4,x2q.

Again, we’ll see that the only term above that gives two bundles of nonzero rank occurs when
m “ p` ´ 1q, and has rank one in this case.
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2. If r` 1 “ 3 this is Vpsl3, tω1, ω1, p` ´ 1qω1 ` ω2, `ω1u, `q, and we obtain, for

Vpsl3, tω1, ω1, p` ´ 1qω1 ` ω2, `ω1u, `q|X1

–
à

µ“c1ω1`c2ω2
c1`2c2”1pmod 3q

Vpsl3, tω1, ω1, µu, `q|pC11,p1,p2,x1q b Vpsl3, t`ω1, `ωr, µ
‹
u, `q|pC12,p3,p4,x2q.

We’ll later see that the only summand on the right hand side with nonzero rank is the one
with µ “ ω1 (so c1 “ 1, and c2 “ 0).

(15) Vpsl3, tω1, ω1, p` ´ 1qω1 ` ω2, `ω1u, `q|X2

–
à

µ“c1ω1`c2ω2
``c1`2c2”1pmod 3q

Vpsl3, tω1, `ω1, µu, `q|pC21,p1,p3,x1q b Vpsl3, tω1, `ω2, µ
‹
u, `q|pC22,p2,p4,x2q.

We’ll later see that the only summand on the right hand side with nonzero rank is the one
with µ “ p` ´ 1qω2 (so c1 “ 0, and c2 “ p` ´ 1q).

3. In general:

Vpslr`1, tω1, ω1, p` ´ 1qω1 ` ωr, `ωru, `q|X1

–
à

µ“
řr

i“1 ciωi
řr

i“1 i¨ci`2”0pmodpr`1qq

Vpslr`1, tω1, ω1, µu, `q|pC11,p1,p2,x1qbVpslr`1, tp`´1qω1`ωr, `ωr, µ
‹, `q.

Moreover, one can show that the only summand on the right hand side with nonzero rank is
the one with µ “ ωr´1.

Vpslr`1, tω1, ω1, p` ´ 1qω1 ` ωr, `ωru, `q|X2

–
à

I
Vpslr`1, tω1, p`´1qω1`ωr, µu, `q|pC21,p1,p3,x1qbVpslr`1, tω1, `ωr, µ

‹, `q|pC22,p2,p4,x2q,

where we sum over the set

I “ tµ “
r
ÿ

i“1

ciωi P P`pslr`1q :
r
ÿ

i“1

i ¨ ci ` ` ` r ” 0pmodpr` 1qqu.

We will eventually show that the only summand on the right hand side with nonzero rank is
the one with µ “ p` ´ 1qωr and µ‹ “ p` ´ 1qω1. We’ll see that:

rkVpslr`1, tω1, p` ´ 1qω1 ` ωr, p` ´ 1qωru, `q “ rkVpslr`1, tω1, `ωr, p` ´ 1qω1, `q “ 1.
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Remark 7.7. This example exhibits the potential for the use of factorization to compute ranks,
which is the idea behind the proof of the Verlinde formula. The comments made also indicate that
there is a lot of vanishing happening – which is a foreshadowing of one of the open problems in the
subject: that is to determine given g and ` necessary and sufficient conditions which will guarantee
that the first Chern class of the bundle Vpg, ~λ, `q is not zero. One indication is that it’s rank is
nonzero, which is actually enough for sl2, but this is not in general. For example, while the rank
of Vpsl4, tω1, 2ω1 `ω3, 2ω1 `ω3, 2ω1 `ω3u, 3q is one, the first Chern class of this bundle is zero
[BGM16]. We’ll discuss this problem.

7.2 Theorem 7.8

7.2.1 Notation

Let C be a possibly nodal curve, p1, p2, . . ., ps P C be s smooth points of C, U “

Cztp1, . . . , psu and let ξi be a local parameter of C near pi. Then as before, for ĝpUq “
gb OCpUq, we have an embedding

ĝpUq ãÑ
s
â

i“1

`

gb kppξiqq
˘

‘ k c “ ĝs, pXb f q ÞÑ pXb fp1pξ1q, . . . ,Xb fpnpξnq, 0q.

Given weights λ1, . . ., λs P P`pgq, we have the pg b kppξiqq ‘ k cq-modules Hλi . The image
of ĝpUq acts on H~λ “ Hλ1 b ¨ ¨ ¨ bHλs :

ĝpUq ˆH~λ Ñ H~λ, ppXb f q, pw1 b ¨ ¨ ¨ b wsqq ÞÑ

s
ÿ

i“1

w1 b ¨ ¨ ¨wi´1 b pXb fpiq ¨ wi b ¨ ¨ ¨ b ws.

Now given any weight µ P P`pgq, recall that the subspace of Hµ annihilated by ĝ` is
isomorphic as a g-module to Vµ, and so Vµ is identified with this subspace of Hµ. Given
t points q1, . . ., qt P U, and weights, µ1, µ2, . . ., µt P P`pgq one can define an action of ĝpUq
on V~µ “ Vµ1 b ¨ ¨ ¨ b Vµt by evaluation:

ĝpUq ˆ V~µ Ñ V~µ, ppXb f q, pv1 b ¨ ¨ ¨ b vtqq ÞÑ

t
ÿ

j“1

v1 b ¨ ¨ ¨ b v j´1 b pXb f pq jqq ¨ v j b ¨ ¨ ¨ b vt.

Theorem 7.8. With notation as above, the inclusions Vµ j ãÑ Hµ j induce an isomorphism

rH~λbV~µsĝpUq
„
Ñ rH~λbH~µsĝpUz~qq – Vpg, ~λY ~µ, `q|pC,~pY~qq.

Propagation of Vacua is a corollary of this.
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7.3 Propagation of Vacua

Corollary 7.9. [Propagation of Vacua] Let q P Cz~p. There is a canonical isomorphism

Vpg, ~λ, `q|pC,~pq – Vpg, ~λY t0u, `q|pC,~pYtquq.

Proof. (of Corollary 7.9) Apply Theorem 7.8 with tq1, . . . , qtu “ tqu, and tµ1, . . . , µtu “ tµ “

0u, using that V0 “ 0.
�
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