ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, SPRING 2017

Instructions:

• You have four hours to complete this exam. Attempt all six problems.
• The use of books, notes, calculators, or other aids is not permitted.
• Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
• Write and sign the Honor Code pledge at the end of your exam.

Date: January 10, 2017.
(1) Consider the following matrices

\[M_1 = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}. \]

Are the \(\mathbb{Z} \)-modules \(R_1 = \mathbb{Z}^2 / M_1 \cdot \mathbb{Z}^2 \) and \(R_2 = \mathbb{Z}^2 / M_2 \cdot \mathbb{Z}^2 \) isomorphic? If so, explain why and describe an isomorphism. If not, explain why not.

(2) Let \(K/F \) be a field extension, and \(\alpha \in K \) an element which is algebraic and of odd degree over \(F \). Show that \(F(\alpha^2) = F(\alpha) \).

(3) Give an example of a pair of square matrices \(A, B \) with \(\mathbb{C} \)-coefficients such that the minimal polynomials \(m_A(x) \) and \(m_B(x) \) are equal, the characteristic polynomials \(c_A(x) \) and \(c_B(x) \) are equal, but the matrices \(A \) and \(B \) are not conjugate.

(4) Let \(R \) be a ring with a unique prime ideal and \(\text{nil}(R) = (0) \). Prove that \(R \) is a field. [Here \(\text{nil}(R) \) stands for the nilradical of \(R \).

(5) Let \(p \in \mathbb{Z}_{>0} \) be a prime and \(R = \mathbb{F}_p[x] \otimes_{\mathbb{F}_p[x]} \mathbb{F}_p[x] \).

(a) Prove that \(x \otimes 1 - 1 \otimes x \in \text{nil}(R) \).

(b) Prove that \(\text{nil}(R) = (x \otimes 1 - 1 \otimes x) \). [Hint: Consider the ring \(R/(x \otimes 1 - 1 \otimes x) \).

(6) Let \(\zeta \) be a primitive 7\(^{th}\) root of unity, considered as a complex number, and let \(F = \mathbb{Q}(\zeta) \) be the extension of the rational numbers obtained by adjoining \(\zeta \). Find, with proof, a primitive element that generates a subfield of \(F \) of degree 2 over \(\mathbb{Q} \).