Analysis Exam, August 2018

Please put your name on your solutions, use $81 / 2 \times 11 \mathrm{in}$. sheets, and number the pages.

1. Let V be the linear subspace of $L^{2}([0,1], d x)$ spanned by the functions $1, x, x^{2}$. Determine the L^{2} distance from the function x^{3} to the subspace V.
2. Consider the function $f(z)=z^{5}+6 z^{3}-10, z \in \mathbb{C}$. Find the number of zeros (counting multiplicity) of f in the region $2<|z|<3$.
3. Determine whether the iterated integral

$$
\int_{0}^{1} \int_{y}^{1} x^{-3 / 2} \cos \left(\frac{\pi y}{2 x}\right) d x d y
$$

exists and, if so, compute its value. Justify every step.
4. Suppose that f and g are holomorphic on the punctured unit disk $0<|z|<1$.
(a) If

$$
\sup _{0<|z|<1}|z|^{1 / 3}|f(z)|<\infty
$$

is the singularity 0 of f necessarily removable? (i.e. is f the restriction of a function holomorphic on the whole unit disk?). Explain your answer.
(b) If

$$
\sup _{0<|z|<1}|z|^{4 / 3}\left|g^{\prime}(z)\right|<\infty
$$

is the singularity 0 of g necessarily removable? Again explain your answer.
5. Let f be a measurable function on \mathbb{R} such that $\int_{\mathbb{R}}|f(x)| d x<\infty$.
(a) Find the limit $\lim _{y \rightarrow 0} \int_{\mathbb{R}}|f(x+y)-f(x)| d x$.
(b) Find the limit $\lim _{y \rightarrow+\infty} \int_{\mathbb{R}}|f(x+y)-f(x)| d x$.
6. Let P be a complex polynomial of degree $d \geq 1$. Prove that the set

$$
\{z \in \mathbb{C}||P(z)| \neq 1\}
$$

consists of at most $d+1$ connected components.

