Analysis Exam, August 2019

Please put your name on your solutions, use $81 / 2 \times 11 \mathrm{in}$. sheets, and number the pages.

1. Suppose that $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function for $n=1,2, \ldots$, that

$$
M=\sup _{n, x}\left|f_{n}^{\prime}(x)\right|<\infty
$$

and that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \in \mathbb{R}$ exists for all $x \in \mathbb{R}$.
(a) Is f continuous on \mathbb{R} ? Prove or find a counterexample.
(b) Is f differentiable on \mathbb{R} ? Prove or find a counterexample.
(c) Does $\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$? Prove or find a counterexample.
2. How many zeros does $f(z)=z^{4}-6 z+3$ have in the annulus $\{z \in \mathbb{C}|1<|z|<2\}$?
3. Suppose f is analytic on $\mathbb{D} \backslash\{0\}$ and, for some $\epsilon>0$, $\operatorname{Re} f(z)>0$ whenever $0<|z|<\epsilon$. Prove that f has a removable singularity at 0 .
4. Prove that for every $f \in C([0,1])$,

$$
\lim _{a \rightarrow \infty} a \int_{0}^{1} e^{-a x} f(x) d x=f(0)
$$

Hint: compute the limit for $f(x)=x^{k}, k=0,1,2, \ldots$
5. Compute for $a \in(0,1)$ the value of the integral

$$
\int_{0}^{\infty} \frac{t^{a}}{1+t^{2}} d t
$$

Hint: consider an analytic function on $\mathbb{C} \backslash[0, \infty)$ or a similar region.
6. (a) If $f_{n} \rightarrow f$ in $L^{1}([0,1], d x)$, prove that

$$
\int_{0}^{1} e^{f} d x \leq \liminf _{n \rightarrow \infty} \int_{0}^{1} e^{f_{n}} d x
$$

(b) Prove that strict inequality is possible.

