Analysis Exam, January 2019

Please put your name on your solutions, use 8 $1/2 \times 11$ in. sheets, and number the pages.

1. Determine whether the following limit exists and, if so, find its value:

$$\lim_{n \to \infty} \int_0^{1/n} \frac{n \, dt}{(1 + n^2 t^2)(1 + t^2)}$$

- 2. Does there exist a nonconstant holomorphic function $f : \mathbb{C} \to \mathbb{C}$, satisfying $\lim_{|z|\to\infty} |z|^{-1/2} |f(z)| = 0$? If so, give an example. If not, explain why not.
- 3. Prove that, for all $f \in C([0,1])$,

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) \, dx = f(1) \; .$$

4. (a) Find a formula for a bijective map g between the upper half-plane $U = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ and the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}$ so that both g and g^{-1} are holomorphic.

(b) Assume that f is an analytic function from U to itself such that f(i) = i. Prove that $|f'(i)| \le 1$.

5. We say that a sequence of real numbers $(a_n)_{n=1}^{\infty}$ increases subexponentially if for every $\epsilon > 0$ there exists $M < \infty$ such that $|a_n| \leq M e^{\epsilon n}$ for all n.

If $(f_n)_{n=1}^{\infty}$ is a sequence of continuous functions from \mathbb{R} to \mathbb{R} , prove that the set

 $\{x \in \mathbb{R} \mid \text{the sequence } (f_n(x))_{n=1}^{\infty} \text{ increases subexponentially} \}$

is a Borel set.

6. (a) Find complex polynomials p(z) and q(z) so that

$$\cos \theta = \frac{p(e^{i\theta})}{q(e^{i\theta})}$$
 for all $\theta \in \mathbb{R}$.

(b) Compute, for any a > 1, the integral

$$\int_0^\pi \frac{1}{a + \cos\theta} \, d\theta$$