Analysis Exam, January 2019

Please put your name on your solutions, use $81 / 2 \times 11$ in. sheets, and number the pages.

1. Determine whether the following limit exists and, if so, find its value:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1 / n} \frac{n d t}{\left(1+n^{2} t^{2}\right)\left(1+t^{2}\right)}
$$

2. Does there exist a nonconstant holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$, satisfying $\lim _{|z| \rightarrow \infty}|z|^{-1 / 2}|f(z)|=0$? If so, give an example. If not, explain why not.
3. Prove that, for all $f \in C([0,1])$,

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

4. (a) Find a formula for a bijective map g between the upper half-plane $U=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ and the unit disk $D=\{z \in \mathbb{C}| | z \mid<1\}$ so that both g and g^{-1} are holomorphic.
(b) Assume that f is an analytic function from U to itself such that $f(i)=i$. Prove that $\left|f^{\prime}(i)\right| \leq 1$.
5. We say that a sequence of real numbers $\left(a_{n}\right)_{n=1}^{\infty}$ increases subexponentially if for every $\epsilon>0$ there exists $M<\infty$ such that $\left|a_{n}\right| \leq M e^{\epsilon n}$ for all n.
If $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of continuous functions from \mathbb{R} to \mathbb{R}, prove that the set

$$
\left\{x \in \mathbb{R} \mid \text { the sequence }\left(f_{n}(x)\right)_{n=1}^{\infty} \text { increases subexponentially }\right\}
$$

is a Borel set.
6. (a) Find complex polynomials $p(z)$ and $q(z)$ so that

$$
\cos \theta=\frac{p\left(e^{i \theta}\right)}{q\left(e^{i \theta}\right)} \quad \text { for all } \theta \in \mathbb{R}
$$

(b) Compute, for any $a>1$, the integral

$$
\int_{0}^{\pi} \frac{1}{a+\cos \theta} d \theta
$$

