1. (a) Show that if \(f : \mathbb{C} \rightarrow \mathbb{C} \) is holomorphic and \(\sup_{z \in \mathbb{C}} |Im f| < \infty \), then \(f \) is a constant.

(b) Does there exist a nonconstant holomorphic \(g \) on \(\mathbb{C} \setminus \{0\} \) with \(\sup_{z \in \mathbb{C} \setminus \{0\}} |Im f| < \infty \)? Give an example or explain why not.

2. Suppose \(X \) is a nonempty set, and \(f_n \) is a sequence of nonnegative real-valued functions on \(X \) converging uniformly to some function \(f : X \rightarrow \mathbb{R} \). Are the following 2 statements necessarily true?

(a) The sequence \(f_n^2 \) is uniformly convergent to \(f^2 \).

(b) The sequence \(\sqrt{f_n} \) is uniformly convergent to \(\sqrt{f} \).

Explain each answer with a proof or counterexample.

3. For \(a \in \mathbb{R} \), find
\[
\int_{-\infty}^{\infty} \frac{e^{iax}}{1 + x^2} \, dx.
\]

4. Suppose that \(f : [0, \infty) \rightarrow [0, \infty) \) is a continuous function in \(L^2 \).

(a) Show that if \(f \) is decreasing, then \(\lim_{x \to \infty} \sqrt{x} f(x) = 0 \).

Hint: Consider the integral of \(f^2 \) from \(a \) to \(2a \).

(b) Show that, without the decreasing assumption, it is possible to have a continuous \(L^2 \) function \(f \) with \(\lim \sup_{x \to \infty} \sqrt{x} f(x) = \infty \).

5. Suppose \(D \) is the open unit disk \(\{z \in \mathbb{C} : |z| < 1\} \).

Find \(\int_{\partial D} \frac{f'(z)}{f(z)} \, dz \) where \(f(z) = z^5 - z + 2 \).

6. Suppose \(f \in L^1([0, 1]) \) and \(g(c) = \int_0^1 |f(t) - c| \, dt \) for \(c \in \mathbb{R} \)

(a) Show that \(\int_0^1 |f(t)| \, dt = \int_0^\infty \text{meas} \{t : |f(t)| > s\} \, ds \).

(b) Show that \(\lim_{c \to \pm \infty} g(c) = \infty \).

(c) Use (a) to show that \(g \) is absolutely continuous on \(\mathbb{R} \) and find a formula for \(g'(c) \) for a.e. \(c \in \mathbb{R} \).