Analysis Exam, August 2007

1. Suppose a and b are two points on the unit circle, and f is a nonconstant holomorphic function on the unit disk D.
(a) Show that

$$
\lim _{t \not 0} \frac{|f(t a)|}{|f(t b)|}=1 .
$$

(b) Is this still true if f is meromorphic with a pole at 0 ?

Prove if true or find a counterexample if false.
2. (a) Suppose $f_{1}, f_{2}, f_{3}, \cdots$ is a sequence of positive continuous functions on $[0,1 \mid$ such that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(t) d t=\infty$. Is it possible that $\lim _{n \rightarrow \infty} f_{n}(t)=0$ for all $0 \leq t \leq 1$? If so, find an example. If not, explain.
(b) Suppose $g_{1}, g_{2}, g_{3}, \cdots$ is a sequence of positive continuous functions on $[0,1]$ such that $\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(t) d t=0$. Show that, for almost every $t \in[0,1]$,

$$
\lim _{n^{\prime} \rightarrow \infty} g_{n^{\prime}}(t)=0 \text { for some subsequence } n^{\prime} \text { of } n
$$

(c) In (b), is it possible that, for each $t \in[0,1], \lim _{n^{\prime \prime} \rightarrow \infty} g_{n^{\prime \prime}}(t)=\infty$ for some subsequence $n^{\prime \prime}$ of n ? If so, find an example. If not, explain.
3. Calculate

$$
\int_{-\infty}^{\infty} \frac{e^{\mathrm{i} t x}}{1+x^{2}} d x
$$

for any $t \in \mathbf{R}$.
4. Let λ denote the Lebesgue measure on \mathbf{R}, and suppose $C=\cap_{i=1}^{\infty} C_{i}$ where $C_{1} \supset C_{2} \supset C_{3} \supset \cdots$ are closed subsets of \mathbf{R}.
(a) Show that $\lambda(C) \leq \lim _{i \rightarrow \infty} \lambda\left(C_{i}\right)$.
(b) Is this always an equality? If so, explain. If not, find an example with strict inequality.
(c) Suppose in addition that $\lambda\left(C_{1}\right)=1$ and $\lambda\left(C_{i} \backslash C_{i+1}\right)=\frac{1}{(i+1)^{2}} \lambda\left(C_{i}\right)$. Find $\lambda(C)$.
5. Suppose A is a finite subset of \mathbf{C}, f is a holomorphic function on $\mathbf{C} \backslash A$, $\lim _{z \rightarrow \infty}|f(z)|=+\infty$, and $\lim _{z \rightarrow a}|f(z)|=+\infty$ for all $a \in A$.
Prove that f is a rational function (that is, a quotient of 2 polynomials).
6. (a) Find an infinitely differentiable function f on the open interval $(-1,1)$ with $f(t)>0$ for $0<|t|<1$ and all derivatives $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=f^{(3)}(0)=\cdots=0$.
(b) Give an example of two infinitely differentiable functions g and h on $(-1,1)$ which are not identically 0 but whose product $g \cdot h$ is identically zero.
(c) Show that this cannot happen if g and h are given by convergent power series $g(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and $h(t)=\sum_{k=0}^{\infty} b_{k} t^{k}$. Hint: consider the functions $\sum_{k=0}^{\infty} a_{k} z^{k}$ and $\sum_{k=0}^{\infty} b_{k} z^{k}$ with z complex.

