Analysis Preliminary Exam, Fall 2011

1. Suppose f is a Lebesgue integrable function on (0, a) and $g(x) = \int_x^a f(t) dt$ for 0 < x < a. Prove that g is also a Lebesgue integrable function on (0, a) and

$$\int_0^a g(x)\,dx \ = \ \int_0^a x\,f(x)\,dx$$

- **2.** Determine all entire holomorphic functions f which satisfy the condition $f(z) = f(z^2)$ for all $z \in \mathbb{C}$.
- **3.** Let f be a real integrable function on the interval (0,1). Prove that:

$$\int_0^1 f(x) \, dx = 0 \quad \Longleftrightarrow \quad \int_0^1 |1 + tf(x)| \, dx \ge 1 \quad \text{for all} \quad t \in \mathbf{R} \; .$$

Hint: To prove the one implication \Leftarrow , proceed by calculating

$$\lim_{t \to 0} \frac{\int_0^1 |1 + tf(x)| \, dx - 1}{t} \, .$$

4. If f(t) is continuous and uniformly bounded for all $t \ge 0$, show that, for $\mathcal{R}e(z) > 0$, the function(Laplace transform)

$$g(z) = \int_0^\infty f(t) e^{-zt} dt$$

is holomorphic for $\mathcal{R}e(z) > 0$. Hint: Show that, for each positive n, $g_n(z) = \int_0^n f(t)e^{-zt}dt$ is an entire function and that the sequence g_n converges uniformly on each region $\{z : \mathcal{R}e(z) > c\}$ for c > 0.

- **5.** Suppose $f_n(x) = \sqrt{n}e^{-nx}$ for $x \in \Omega = (0, 1)$. Prove your answers to each of the following questions:
- (a) Does $f_n(x) \to 0$ as $n \to \infty$ for each $x \in \Omega$?
- (b) Does f_n converge uniformly on Ω as $n \to \infty$?
- (c) Does $||f_n||_{L^2(\Omega)} \to 0$ as $n \to \infty$?
- (d) Does $\int_{\Omega} f_n(x)g(x) dx \to 0$ as $n \to \infty$ for each $g \in L^2(\Omega)$?
- (e) Does $\int_{\Omega} f_n(x)h(x) dx \to 0$ as $n \to \infty$ for each $h \in L^1(\Omega)$?

6. Suppose that f be a continuous map from the closed disk $\overline{D} = \{z : |z| \le 1\}$ into the open disk $D = \{z : |z| < 1\}$ and that f is analytic on the open disk D. Prove that f has exactly one fixed point (that is, a point a such that f(a) = a.)