## Analysis Exam, August 2013

1. Suppose that $D$ and $\bar{D}$ are the open and closed unit disks in $\mathbf{C}$, that $f: \bar{D} \times \bar{D} \rightarrow \mathbf{C}$ is continuous, and that, for every fixed point $a \in D$, the two functions

$$
z \in D \mapsto f(z, a) \in \mathbf{C} \quad \text { and } \quad w \in D \mapsto f(a, w) \in \mathbf{C}
$$

are holomorphic.
(a) Find a formula for $f(0,0)$ in terms of the values $f(z, w)$ where both $|z|=1,|w|=1$.
(b) Is it always true that $f$ vanishes identically whenever there is a sequence $\left(z_{i}, w_{i}\right)$ approaching $(0,0)$ with $f\left(z_{i}, w_{i}\right)=0$ ? Prove if true or find a counterexample if false.
2. Let $I$ be the open unit interval $\{t \in \mathbf{R}: 0<t<1\}$.
(a) Give an example of a function $f: I \rightarrow \mathbf{R}$ that is continuous but not uniformly continuous.
(b) Give an example of a sequence of uniformly continuous functions $g_{n}: I \rightarrow \mathbf{R}$ that is not an equi-continuous sequence.
(c) Give an example of a uniformly continuous function $h: I \rightarrow \mathbf{R}$ that is not absolutely continuous.
3. How many roots does the equation $z^{7}-2 z^{5}+6 z^{3}-z+1=0$ have in the unit disk $D$ ?
4. Suppose $\lambda$ denotes Lebesgue measure on $\mathbf{R}$, and $0<C<1$. Show that there are numbers $\delta_{n} \rightarrow 0$ (depending on $C$ ) with the following property: If $A_{1}, A_{2}, \ldots, A_{n}$ are measurable subsets of $[0,1]$ each with Lebesgue measure $C$, then $\lambda\left(A_{i} \cap A_{j}\right) \geq\left(1-\delta_{n}\right) C^{2}$ for some $1 \leq i<j \leq n$.

Hint: Consider $F^{2}$ where $F=\chi_{A_{1}}+\chi_{A_{2}}+\ldots+\chi_{A_{n}}$.
Here $\chi_{A}$ is the characteristic (or indicator) function: $\chi_{A}(x)= \begin{cases}1 & \text { for } x \in A \\ 0 & \text { for } x \notin A .\end{cases}$
5. (a) Show that $\phi(z)=\frac{z-1}{z+1}$ maps the right half-plane $U=\{x+\mathbf{i} y \in \mathbf{C}: x>0\}$ conformally onto the unit disk $D$.
(b) Find a conformal map onto the right half-plane $U$ from the left-slit-plane
$V=\mathbf{C} \backslash\{t: t \leq 0\}=\{x+\mathbf{i} y \in \mathbf{C}: y \neq 0$ whenever $x \leq 0\}$.
(c) Show that there exists a nonconstant bounded holomorphic function on $V$.
(d) Show that there exists a bounded harmonic function on $V$ so that, for all $x<0$, $\lim _{ \pm y \downarrow 0} h(x+\mathbf{i} y)= \pm 1$.
6. (a) Define the space $L^{1}([0,1])$ and the $L^{1}$ norm on this space.
(b) Show that the function $F:[0,1] \rightarrow L^{1}(\mathbf{R})$,
$F(t)=\chi_{[0, t]} \quad$ (the characteristic function of $\left.[0, t]\right)$
satisfies $\|F(s)-F(t)\|_{L^{1}} \leq|s-t|$ for $0<s<t<1$.
(c) Show that, for any $0<t<1$, there does not exist a $g \in L^{1}([0,1])$ so that $\lim _{h \rightarrow 0}\left\|\frac{F(t+h)-F(t)}{h}-g\right\|_{L^{1}}=0$. (i.e. $F$ is not differentiable at $t$.)

