(1) Let f be a complex-valued function defined on \mathbb{R} which is Lebesgue measurable and has

$$
\int_{-\infty}^{\infty}|f(x)| d x<\infty
$$

Consider the infinite series

$$
g(x)=\sum_{n=-\infty}^{\infty} f(x+n)
$$

(a) Prove that for almost every $x \in \mathbb{R}$, the series defining $g(x)$ is absolutely convergent. (Therefore $g(x)$ is well defined almost everywhere, and periodic with period 1.)
(b) Prove that $\int_{0}^{1}|g(x)| d x \leq \int_{-\infty}^{\infty}|f(x)| d x$.
(2) Let $z_{0} \in \mathbb{C}$ with $z_{0} \neq 1$. For every integer n, calculate the counterclockwise integral

$$
\int_{|z|=1}\left(z-z_{0}\right)^{n} d z
$$

(3) Consider a sequence of Lebesgue measurable functions $f_{n}:[0,1] \rightarrow[0, \infty)$, and recall that Fatou's Lemma states that

$$
\int_{[0,1]}\left(\liminf _{n \rightarrow \infty} f_{n}\right) d x \leq \liminf _{n \rightarrow \infty} \int_{[0,1]} f_{n} d x
$$

(a) Give an example of such a sequence for which

$$
\int_{[0,1]}\left(\liminf _{n \rightarrow \infty} f_{n}\right) d x<\liminf _{n \rightarrow \infty} \int_{[0,1]} f_{n} d x
$$

(b) Give a (different) example of such a sequence for which

$$
\int_{[0,1]}\left(\limsup _{n \rightarrow \infty} f_{n}\right) d x>\limsup _{n \rightarrow \infty} \int_{[0,1]} f_{n} d x
$$

(4) (a) State the Argument Principle, which is an integral formula for the number of zeroes (counting multiplicities) of a complex-valued function f which is continuous on $|z| \leq 1$, holomorphic on $|z|<1$, and nonvanishing on $|z|=1$.
(b) Let D be a connected open subset of \mathbb{C} and consider a sequence f_{n} of holomorphic functions on D which converge uniformly to a holomorphic function f. Assuming that each f_{n} is injective (one-to-one), prove that
either f is also an injection or f is a constant.
Turn over for problems (5) and (6).
(5) This problem concerns the space $L^{2}(\mathbb{R})$ consisting of Lebesgue measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\|f\|=\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}<\infty
$$

Let $f, g \in L^{2}(\mathbb{R})$ and assume $\|f\|>0$. Prove that the limit

$$
\lim _{t \rightarrow \infty} \frac{\|f+t g\|-\|f\|}{t}
$$

exists, and calculate it .
(6) Again let D be a connected open subset of \mathbb{C}, and suppose $z_{0} \in D$.

Denote by U the open unit disc : $U=\{z \in \mathbb{C}| | z \mid<1\}$, and let

$$
\mathcal{H}=\{\text { holomorphic } f: D \rightarrow U\} .
$$

Define

$$
P\left(z_{0}\right)=\sup \left\{\left|f^{\prime}\left(z_{0}\right)\right| \mid f \in \mathcal{H}\right\}
$$

(a) Prove that $0 \leq P\left(z_{0}\right)<\infty$.
(b) Give an example of a D, z_{0} for which $P\left(z_{0}\right)=0$.
(c) Prove that

$$
P\left(z_{0}\right)=\sup \left\{\left|f^{\prime}\left(z_{0}\right)\right| \mid f \in \mathcal{H} \text { and } f\left(z_{0}\right)=0\right\}
$$

(d) In case $D=U$ and $z_{0}=0$, calculate $P\left(z_{0}\right)$.

