Qualifying Examination Analysis

Thursday, August 20, 2015 9:00AM-1:00PM

There are six problems.
To ensure adequate space for your answer, there is a blank page following the page on which a problem occurs.

Please PRINT your name clearly on this page.
"Ahlfors" means Complex Analysis, Third Edition.
"Royden" means Real Analysis, Third Ediition.

Problem 1 Let $\left\{a_{n} \mid n \geq 1\right\}$ be the Fibonacci sequence:

$$
\begin{gathered}
a_{1}=a_{2}=1 \\
a_{n+1}=a_{n}+a_{n-1}, n \geq 2
\end{gathered}
$$

A. Prove that the power series

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

has a positive radius of convergence. A simple induction shows that $0<a_{n}<2^{n}, n>0$. Therefore, the radius is at least $\frac{1}{2}$. See Ahlfors, p . 38.
B. Prove that f is a rational function, and give a formula for it.

$$
\begin{gathered}
f(z)=z+2 z^{2}+\sum_{n=3}^{\infty} a_{n} z^{n} \\
=z+2 z^{2}+\sum_{n=3}^{\infty}\left(a_{n-2}+a_{n-1}\right) z^{n}=z+2 z^{2}+z^{2} \sum_{k=1}^{\infty} a_{k} z^{k}+z \sum_{l=2}^{\infty} a_{l} z^{l} \\
=z+z^{2}+z^{2} \sum_{k=1}^{\infty} a_{k} z^{k}+z \sum_{l=1}^{\infty} a_{l} z^{l}=\left(z+z^{2}\right)(1+f(z)) \\
f(z)=\frac{z+z^{2}}{1-z-z^{2}} .
\end{gathered}
$$

C. State a theorem that allows you to identify the radius of convergence of the power series (1) without further computation. $1-z-z^{2}$ has $\frac{\sqrt{5}-1}{2}$ for its smallest root. A holomorphic function is represented by its Taylor series about zero on any disc centered at zero in its domain. Ahlfors, p. 179.

Problem 2 1. Let f be bounded and holomorphic on the punctured disc, $\Delta_{0}=\{z|0<|z|<1\}$. State a theorem concerning the possibility of assigning a value to f at $z=0$ so that the extended function is holomorphic on the disc $\Delta=\{z| | z \mid<1\}$.
2. Prove the theorem stated in 1 .

Ahlfors, pp 124 ff. for Parts 1 and 2.
3. Is the same statement true if the function is real-valued and the word 'harmonic' is used in place of the word 'holomorphic'? Explain your answer.

See Ahlfors, pp. 166-168 for Poisson's formula. Fix $R>0$ so that the real function f is bounded and harmonic on the disc of radius $2 R$ centered at zero. Use the Poisson formula to construct an harmonic function, F, on the disc $\Delta=\left\{z|0<|z| \leq R\}\right.$ with $\left.F\right|_{|z|=R}=\left.f\right|_{|z|=R}$. The function $g=F-f$ is continuous on $\Delta \backslash\{0\}$, harmonic for $0<|z|<R$ and it vanishes on $|z|=R$. We claim that g vanishes identically on $\Delta \backslash\{0\}$, so that F provides the harmonic continuation of f. It is sufficient to prove for any fixed $z \in \Delta$ that $g(z) \leq 0$ and $g(z) \geq 0$. It is given that $M=\|f\|_{\infty}<\infty$ and therefore, e.g., by the maximum principle for F, on $\Delta,\|g\|_{\infty}<2 M$. Let $\varepsilon>0$ be arbitrary. For all sufficiently small values of $r>0$ it is true that $|\varepsilon \log r|>2 M$. Therefore, by the maximum (or minimum) principle, the functions $g_{ \pm}=g \pm \varepsilon \log |z|, r<|z|<R$ satisfy

$$
\begin{equation*}
g_{+}(w)<0<g_{-}(w), r<|w|<R \tag{1}
\end{equation*}
$$

and therefore,

$$
\varepsilon \log |w|<g(w)<-\varepsilon \log |w|, r<|w|<R .
$$

Let $z \in \Delta$ and $\varepsilon>0$ be given. Choose r as above, and then decrease it, if necessary, to guarantee that $r<|z|$. From (1)

$$
\varepsilon \log |z|<g(z)<-\varepsilon \log |z| .
$$

Since z is fixed and ε is arbitrarily small, it follows that

$$
0 \leq g(z) \leq 0 .
$$

Problem 3 Is it possible to define a single-valued holomorphic branch of $(z(1-z))^{\frac{1}{2}}$ on $\mathbb{C} \backslash[0,1]$? Explain why or why not.

If γ is a smooth closed curve in $\mathbb{C} \backslash[0,1]$ the function $N(\gamma, x)$,

$$
N(\gamma, x)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-x}, 0 \leq x \leq 1,
$$

is continuous and integer-valued on the unit interval, hence constant. In particular,

$$
\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{1}{z}-\frac{1}{z-1}\right) d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z(1-z)}=0 .
$$

This means that for any $z_{0} \in \mathbb{C} \backslash[0,1]$ the line integrals

$$
\varphi(z)=w_{0}+\int_{z_{0}}^{z} \frac{d \zeta}{\zeta(1-\zeta)}
$$

are independent of path in $\mathbb{C} \backslash[0,1]$. The function φ is holomorphic on $\mathbb{C} \backslash[0,1]$ with derivative $\frac{1}{z(1-z)}$, the same derivative as any single-valued branch of $\log z(1-z)$ on a region in $\mathbb{C} \backslash[0,1]$. In particular, if $e^{w_{0}}=z_{0}$, then φ is a single-valued branch of $\log z(1-z)$ on $\mathbb{C} \backslash[0,1]$. Since

$$
e^{\varphi(z)}=z(1-z), z \in \mathbb{C} \backslash[0,1],
$$

the function $\psi(z)=e^{\frac{1}{2} \varphi(z)}$ is an holomorphic square root of $(z(1-z))^{\frac{1}{2}}$ on $\mathbb{C} \backslash[0,1]$.

NOTATIONS and ASSUMPTIONS. Denote the Lebesgue measure by $d x . F(x)$ is a differentiable function on \mathbb{R} (not necessarily continuously differentiable). The derivative, $F^{\prime}(x)$, is assumed to be locally bounded on \mathbb{R}. That is, for any $T<\infty$,

$$
-M \leq F^{\prime}(x) \leq M \text { for all } x \in[-T, T], \text { where } M=M(T)<\infty
$$

Problem 4 1. Prove that the derivative, $F^{\prime}(x)$, is Borel measurable.

This is true because a differentiable function is continuous, the derivative satisfies

$$
\lim _{n \rightarrow \infty} \frac{F\left(x+\frac{1}{n}\right)-F(x)}{\frac{1}{n}}=F^{\prime}(x), x \in \mathbb{R},
$$

and the pointwise limit of a pointwise convergent sequence of Borel functions is Borel.
2. Prove that the Lebesgue integral of $F^{\prime}(x)$ over any finite interval satisfies

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a),-\infty<a<b<\infty
$$

Lebesgue's bounded convergence theorem implies

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} \frac{F\left(x+\frac{1}{n}\right)-F(x)}{\frac{1}{n}} d x=\int_{[a, b]} F^{\prime}(x) d x
$$

On the other hand, for each sufficiently large $n>0$, it is true that

$$
\int_{a}^{b} \frac{F\left(x+\frac{1}{n}\right)-F(x)}{\frac{1}{n}} d x=n \int_{b-\frac{1}{n}}^{b} F\left(x+\frac{1}{n}\right) d x-n \int_{a}^{a+\frac{1}{n}} F(x) d x
$$

Continuity of F, cited above, implies the right side converges to $F(b)$ $F(a)$.

Problem 5 Let f and g be real-valued, Lebesgue measurable functions on \mathbb{R}. Prove that $\{x \mid f(x)=g(x)\}$ is a Lebesgue measurable set. Your proof should use the definition of measurability. It is not allowed to say simply that " $f-g$ is measurable, therefore...."

It is sufficient to prove $\{x \mid f(x)>g(x)\}$ and $\{x \mid f(x)<g(x)\}$ are measurable. Clearly,

$$
\begin{gathered}
\{x \mid f(x)>g(x)\}=\bigcup_{r \in \mathbb{Q}}\{x \mid g(x)<r<f(x)\} \\
=\bigcup_{r \in \mathbb{Q}}(\{x \mid g(x)<r\} \cap\{x \mid r<f(x)\}),
\end{gathered}
$$

which is a countable union of measurable sets. A similar argument is used for $\{x \mid f(x)<g(x)\}$. The set in question is the complement of the unions, hence measurable.

Problem 6 Prove directly, i.e., without the help of Stirling's formula, that

$$
\lim _{n \rightarrow \infty} \frac{(n!)^{\frac{1}{n}}}{n}=\frac{1}{e} .
$$

Represent the logarithm of $\frac{\left(n!\frac{1}{n}\right.}{n}$ in terms of the sums

$$
\begin{gathered}
\log \left(\frac{(n!)^{\frac{1}{n}}}{n}\right)=\frac{1}{n} \log n!-\log n \\
=\frac{1}{n}(\log n!-n \log n)=\frac{1}{n} \sum_{k=0}^{n-1} \log \left(1-\frac{k}{n}\right) .
\end{gathered}
$$

Define step functions, $f_{n}(x)$, by

$$
f_{n}(x)=\sum_{k=0}^{n-1}\left(\log \left(1-\frac{k}{n}\right)\right) \chi_{\left(\frac{k}{n}, \frac{k+1}{n}\right)}(x) .
$$

Observe that the sequence $\left\{f_{n}(x)\right\}$ is dominated by the function $|\log (1-x)|$, which is easily checked to be Lebesgue integrable,

$$
\left|f_{n}(x)\right| \leq|\log (1-x)|, 0 \leq x \leq 1 .
$$

The dominated convergence theorem implies, using $(t \log t-t)^{\prime}=\log t, 0<t$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n-1} \log \left(1-\frac{k}{n}\right) \\
& =\int_{0}^{1} \log (1-x) d x=\int_{0}^{1} \log y d y \\
& =\lim _{t \searrow 0} \int_{t}^{1} \log y d y=\left.\lim _{t \searrow 0}(t \log t-t)\right|_{t} ^{1}=-1 .
\end{aligned}
$$

The substitution $y=1-x$ does not change the Lebesgue integral because Lebesgue measure is preserved by the substitution. Exponentiate to obtain the desired result.

