Analysis Exam, August 2017

1. Let D^* denote the punctured unit disk $\{z \in \mathbb{C} : 0 < |z| < 1\}$.

(a) Show that if f is holomorphic on D^* and $\lim_{z\to 0} zf(z) = 0$, then the singularity of f at 0 is removable.

(b) Describe the set of all holomorphic g on D^* which satisfy $|g(z)| \leq \log(1/|z|)$. Justify your answer.

2. (a) What is the defining condition for a sequence f_n of L^1 functions on [0,1] to be a *Cauchy sequence* with respect to the L^1 norm?

(b) Give an example of a L^1 Cauchy sequence which consists of continuous functions but which does not converge in L^1 to a continuous function.

(c) Show that any such L^1 Cauchy sequence which consists of characteristic functions does converge in L^1 to a characteristic function.

(Recall a *characteristic function* is one which has only the two values 0 and 1.)

3. Suppose f is holomorphic on the disk $D = \{z : |z| < 1\}, \ \varepsilon > 0$, and $\lim_{n \to \infty} f(z_n) = 0$ for any sequence $z_n \in D$ that converges to $e^{i\theta}$ for some positive $\theta < \varepsilon$. Prove that f is identically 0.

4. Let K be a nonempty compact subset in \mathbb{R}^3 and let f(x) = dist(x, K), and let $g = \max\{1 - f, 0\}$ Prove that $\lim_{n\to\infty} \int_{\mathbb{R}^3} g^n dx$ exists and is equal to meas (K).

5. Consider a Lebesgue measurable subset E of **R** with finite positive measure. On $\mathbf{C} \setminus E$ define the function

$$g(z) = \int_{E} \frac{1}{t-z} dt$$
.

(a) Prove that g is holomorphic on $\mathbf{C} \setminus E$.

(b) Prove that g cannot be extended to function holomorphic on all of C.

(c) Show that $\lim_{z\to\infty} zf(z)$ exists and determine its value.

6. Suppose μ is a measure on X and E_n is a sequence of μ measurable sets.

(a) Prove the statement:

If $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, then μ almost every point $x \in X$ belongs to at most finitely many of the sets E_n .

(b) Is the converse true? That is, does the assumption $\mu(\{x : x \text{ belongs to infinitely many } E_n\}) = 0$ imply that $\sum_{n=1}^{\infty} \mu(E_n) < \infty$? Prove the converse if it is true or provide a counterexample if it is false.