(1) Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic and $a, b \in \mathbb{D}$ with $f(a)=b$. Prove that

$$
f^{\prime}(a) \leq \frac{1-|b|^{2}}{1-|a|^{2}}
$$

(Here \mathbb{D} denotes the open unit disc in \mathbb{C}.)
(2) Suppose that f is a Lebesgue measurable function on the interval $[0,1]$ and $g(x)=\sqrt{x}$ for $x \in[0,1]$. Prove:
(a) $\|f \circ g\|_{L^{1}} \leq 2\|f\|_{L^{1}}$.
(b) $\|f \circ g\|_{L^{1}} \leq \frac{7}{6}\|f\|_{L^{2}}$.

Here $\|f\|_{L^{p}}=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}$.
(3) Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin a x}{x\left(1+x^{2}\right)}
$$

where $a>0$.
(4) Prove that for any (real-valued) $f \in L^{1}([0,1])$, there exists a number $c \in\left[0, \frac{1}{2}\right)$ such that

$$
\int_{c}^{c+\frac{1}{2}} f(x) d x=\frac{1}{2} \int_{0}^{1} f(x) d x
$$

(5) How many zeros does the function $f(z)=9 z^{10}-e^{2 z}$ have inside the unit circle? Are the zeros distinct?
(6) Compute:
(a) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{x^{n-2}}{1+x^{n}} d x$
(b) $\lim _{n \rightarrow \infty} n \int_{0}^{\infty} \frac{\sin y}{y\left(1+n^{2} y^{2}\right)} d y$. Hint: Substitute $x=n y$.

