1. Let \(f \geq 0 \) be a measurable function defined on \([0, \infty)\) such that
\[
\int_0^x f(t) \, dt \leq e^x \quad \text{for all} \quad 0 \leq x < \infty.
\]
Suppose that \(a > 1 \). Prove that
\[
\int_0^\infty f(t) e^{-at} \, dt < \infty.
\]

2. Suppose that \(f \) is a holomorphic function defined on some neighborhood of the origin. Suppose that \(f \) satisfies the equation
\[
f(2z) = 2f(z) f'(z) = 2f(z) \frac{df}{dz}
\]
for all \(|z| < \varepsilon \) for some \(\varepsilon > 0 \). Prove that there exists an entire holomorphic function which is equal to \(f \) on some neighborhood of the origin.

3. Let \(f \) and \(g \) be real valued functions belonging to \(L^2(\mathbb{R}) \) (they are measurable and their squares are integrable on \(\mathbb{R} \)). Let \(h \) be the convolution of \(f \) and \(g \). That is, \(h \) is the function defined by
\[
h(x) = \int_{-\infty}^{\infty} f(x-t) g(t) \, dt.
\]
Prove that \(h \) is a bounded continuous function on \(\mathbb{R} \), and that \(\lim_{|x| \to \infty} h(x) = 0 \).
4. Let \(f \) be the function defined by

\[
f(z) = \int_{-1}^{1} \frac{dt}{b - z},
\]

where \(z \in \mathbb{C} \) and \(z \) is not a real number in the interval \([-1, 1]\).

a. Prove that \(f \) is holomorphic.

b. Compute \(\lim_{y \to 0+} f(iy) \) and \(\lim_{y \to 0-} f(iy) \).

5. Construct a real valued \(C^\infty \) function on \(\mathbb{R} \) which equals 0 on \((-\infty, 0] \) and equals 1 on \([1, \infty) \).

6. Suppose \(f \) is a holomorphic function defined on the unit disk \(|z| < 1 \), and suppose \(f \) is not identically zero. Is it possible that for every \(z_0 \) such that \(|z_0| = 1 \) there exists a sequence \(\{z_1, z_2, z_3, \ldots \} \) such that \(|z_n| < 1 \) for all \(n \geq 1 \) and \(f(z_n) = 0 \) for all \(n \geq 1 \)?

Explain.