1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and both f and f^{\prime} are integrable on \mathbf{R}. Show that $\int_{-\infty}^{\infty} f^{\prime}(t) d t=0$.
2. (a) Give an example of a pointwise convergent sequence of real-valued differentiable functions $g_{n}:[-1,1] \rightarrow[-1,1]$ whose derivatives $g_{n}^{\prime}(0)$ do not converge.
(b) Suppose that D is the open unit disk $\{z \in \mathbf{C}:|z|<1\}$. Prove that if $f_{n}: D \rightarrow D$ is a pointwise convergent sequence of holomorphic functions, then the derivatives f_{n}^{\prime} converge at every point of D.
3. Suppose that A_{1}, A_{2}, \ldots and E_{1}, E_{2}, \ldots are Lebesgue measurable subsets of $[0,1]$ such that $[0,1] \subset \cup_{i=1}^{\infty} A_{i}$, and, for each $i=1,2, \ldots$, the Lebesgue measure $\lambda\left(A_{i} \cap E_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$. Prove that $\lambda\left(E_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$.
4. Suppose that f is a holomorphic function on $\mathbf{C} \backslash\{1\}$ and $\lim _{z \rightarrow \infty}|z||f(z)|=+\infty$ and $\lim _{z \rightarrow 1}|z-1|^{2}|f(z)|=+\infty$.
(a) Find one specific such f.
(b) Show that any such f is a rational function (that is, a quotient of 2 polynomials).
(c) Are all such f contained in a finite dimensional space of functions?
5. Suppose that $f(s)$ is a positive integrable function on \mathbf{R}.
(a) Show that the Lebesgue measure $g(s)=\lambda\{t: f(t)>s\}$ is a measurable function of s, and
(b) $\int_{0}^{\infty} g(s) d s=\int_{-\infty}^{\infty} f(t) d t$.
6. Suppose $f_{k}:\{z \in \mathbf{C}:|z|<1\} \rightarrow \mathbf{C}$ is a sequence of injective holomorphic functions that converges uniformly on compact subsets to a function g.
(a) Prove that g is holomorphic.
(b) Prove that g is either injective or a constant function.
