Analysis Exam, May 2012

1. Suppose $f : \mathbf{R} \to \mathbf{R}$ is differentiable and both f and f' are integrable on \mathbf{R} . Show that $\int_{-\infty}^{\infty} f'(t) dt = 0.$

2. (a) Give an example of a pointwise convergent sequence of real-valued differentiable functions $g_n : [-1, 1] \rightarrow [-1, 1]$ whose derivatives $g'_n(0)$ do not converge.

(b) Suppose that D is the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$. Prove that if $f_n : D \to D$ is a pointwise convergent sequence of *holomorphic* functions, then the derivatives f'_n converge at every point of D.

3. Suppose that A_1, A_2, \ldots and E_1, E_2, \ldots are Lebesgue measurable subsets of [0, 1] such that $[0, 1] \subset \bigcup_{i=1}^{\infty} A_i$, and, for each $i = 1, 2, \ldots$, the Lebesgue measure $\lambda(A_i \cap E_j) \to 0$ as $j \to \infty$. Prove that $\lambda(E_j) \to 0$ as $j \to \infty$.

4. Suppose that f is a holomorphic function on $\mathbb{C} \setminus \{1\}$ and $\lim_{z\to\infty} |z| |f(z)| = +\infty$ and $\lim_{z\to1} |z-1|^2 |f(z)| = +\infty$.

- (a) Find one specific such f.
- (b) Show that any such f is a rational function (that is, a quotient of 2 polynomials).
- (c) Are all such f contained in a finite dimensional space of functions?

5. Suppose that f(s) is a positive integrable function on **R**.

(a) Show that the Lebesgue measure $g(s) = \lambda\{t\,:\, f(t) > s\,\}$ is a measurable function of s, and

(b)
$$\int_0^\infty g(s) \, ds = \int_{-\infty}^\infty f(t) \, dt$$

6. Suppose $f_k : \{z \in \mathbf{C} : |z| < 1\} \to \mathbf{C}$ is a sequence of injective holomorphic functions that converges uniformly on compact subsets to a function g.

- (a) Prove that g is holomorphic.
- (b) Prove that g is either injective or a constant function.