(1) (10 points) Compute

$$
\int_{0}^{\infty} \frac{\cos 2 x}{4+x^{2}} d x
$$

(2) (5 points) Construct a subset K of $[0 ; 1]$ such that K is closed, K has positive Lebesgue measure, and K has empty interior.
(3) Denote $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $Y=\left\{z=x+\mathbf{i} y \in \mathbb{C}: x \geq e^{y}\right\}$.
(a) (5 points) Does there exist a non-constant analytic function $f: \mathbb{D} \rightarrow Y$ such that $f(0)=1$?
(b) (5 points) Does there exist a non-constant analytic function $f: \mathbb{D} \rightarrow Y$ such that $f(0)=2$?
(Justify your answers.)
(4) Consider the spaces $L^{p}=L^{p}([0 ; 1], d m)$ where $1<p<\infty$ and $d m$ denotes Lebesgue measure, with the associated norm $\|\cdot\|_{p}$.
(a) (5 points) For $1<q<p<\infty$ and $f \in L^{p}$, show that $f \in L^{q}$ and that $\|f\|_{L^{q}} \leq\|f\|_{L^{p}}$.
(b) (5 points) For $f \in L^{\infty}$, show that

$$
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}
$$

(c) (5 points) Prove or disprove: $L^{\infty}=\bigcap_{1 \leq p<\infty} L^{p}$.
(5) Suppose $f \in L^{2}=L^{2}([0 ; 1] ; d m)$ as in problem (4).
(a) (5 points) Show that

$$
F(x)=\int_{0}^{x} f(t) d m(t)
$$

is a continuous function on $[0,1]$.
(b) (5 points) Suppose that $f_{n}, f \in L^{2}$ and

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(t) g(t) d m(t)=\int_{0}^{1} f(t) g(t) d m(t)
$$

for all $g \in L^{2}$. Show that $F_{n} \rightarrow F$ uniformly where $F_{n}(x)=\int_{0}^{x} f_{n}(t) d m(t)$ for $x \in[0 ; 1]$.
(6) (10 points) Show that, for any $0<r<1$, there exists an integer $n \geq 2$ such that the polynomial

$$
P_{n}(z)=1+2 z+3 z^{2}+\cdots+n z^{n-1}
$$

has no roots in the disk $\{z \in \mathbb{C}:|z|<r\}$.

