(1) (10 points) Compute
\[\int_0^\infty \frac{\cos 2x}{4 + x^2} \, dx . \]

(2) (5 points) Construct a subset \(K \) of \([0; 1]\) such that \(K \) is closed, \(K \) has positive Lebesgue measure, and \(K \) has empty interior.

(3) Denote \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) and \(Y = \{ z = x + iy \in \mathbb{C} : x \geq e^y \} \).
 (a) (5 points) Does there exist a non-constant analytic function \(f : \mathbb{D} \to Y \) such that \(f(0) = 1 \)?
 (b) (5 points) Does there exist a non-constant analytic function \(f : \mathbb{D} \to Y \) such that \(f(0) = 2 \)?
 (Justify your answers.)

(4) Consider the spaces \(L^p = L^p([0; 1], dm) \) where \(1 < p < \infty \) and \(dm \) denotes Lebesgue measure, with the associated norm \(\| \cdot \|_p \).
 (a) (5 points) For \(1 < q < p < \infty \) and \(f \in L^p \), show that \(f \in L^q \) and that \(\| f \|_L^q \leq \| f \|_{L^p} \).
 (b) (5 points) For \(f \in L^\infty \), show that \(\| f \|_{L^\infty} = \lim_{p \to \infty} \| f \|_p \).
 (c) (5 points) Prove or disprove: \(L^\infty = \bigcap_{1 \leq p < \infty} L^p \).

(5) Suppose \(f \in L^2 = L^2([0; 1]; dm) \) as in problem (4).
 (a) (5 points) Show that
 \[F(x) = \int_0^x f(t) \, dm(t) \]
 is a continuous function on \([0, 1]\).
 (b) (5 points) Suppose that \(f_n, f \in L^2 \) and
 \[\lim_{n \to \infty} \int_0^1 f_n(t) \, g(t) \, dm(t) = \int_0^1 f(t) \, g(t) \, dm(t) \]
 for all \(g \in L^2 \). Show that \(F_n \to F \) uniformly where \(F_n(x) = \int_0^x f_n(t) \, dm(t) \) for \(x \in [0; 1]\).

(6) (10 points) Show that, for any \(0 < r < 1 \), there exists an integer \(n \geq 2 \) such that the polynomial
 \[P_n(z) = 1 + 2z + 3z^2 + \cdots + nz^{n-1} \]
 has no roots in the disk \(\{ z \in \mathbb{C} : |z| < r \} \).