(1) (10 points) Compute

$$\int_0^\infty \frac{\cos 2x}{4+x^2} \, dx \, dx$$

- (2) (5 points) Construct a subset K of [0; 1] such that K is closed, K has positive Lebesgue measure, and K has empty interior.
- (3) Denote D = {z ∈ C : |z| < 1} and Y = {z = x + iy ∈ C : x ≥ e^y}.
 (a) (5 points) Does there exist a non-constant analytic function f : D → Y such that f(0) = 1?
 (b) (5 points) Does there exist a non-constant analytic function f : D → Y such that f(0) = 2?
 (Justify your answers.)
- (4) Consider the spaces $L^p = L^p([0;1], dm)$ where 1 and <math>dm denotes Lebesgue measure, with the associated norm $\|\cdot\|_p$.
 - (a) (5 points) For $1 < q < p < \infty$ and $f \in L^p$, show that $f \in L^q$ and that $||f||_{L^q} \le ||f||_{L^p}$.
 - (b) (5 points) For $f \in L^{\infty}$, show that

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p .$$

(c) (5 points) Prove or disprove: $L^{\infty} = \bigcap_{1 \le p < \infty} L^p$.

(5) Suppose f ∈ L² = L²([0; 1]; dm) as in problem (4).
(a) (5 points) Show that

$$F(x) = \int_0^x f(t) \, dm(t)$$

is a continuous function on [0, 1].

(b) (5 points) Suppose that $f_n, f \in L^2$ and

$$\lim_{n \to \infty} \int_0^1 f_n(t) g(t) \, dm(t) = \int_0^1 f(t) g(t) \, dm(t)$$

for all $g \in L^2$. Show that $F_n \to F$ uniformly where $F_n(x) = \int_0^x f_n(t) dm(t)$ for $x \in [0, 1]$.

(6) (10 points) Show that, for any 0 < r < 1, there exists an integer $n \ge 2$ such that the polynomial $P(x) = 1 + 2x + 2x^2 + \cdots + mx^{n-1}$

$$P_n(z) = 1 + 2z + 3z^2 + \dots + nz^{n-1}$$

has no roots in the disk $\{z \in \mathbb{C} : |z| < r\}$.