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Problem 1 Let w0 E C. Prove there exists a holomorphic function, f (·), 
on the disc 

such that 
f (0) = Wo 

(1.1) 
f'(z) = ef(z),z ED.. 

Express the solution f in closed form. 

Solution #1 

One sees that f" (z) = f' (z) ef(z) = e2f'(z), and then, by induction on n, 

f(n) (z) = (n - l)!enf(z), n 2'. 1 

f(n) (0) = (n- l)!enwo,n 2'. 1. 

The Taylor expansion of f about O is 

00 

f (z) = Wo + L JC~/
0)zn 

n=l 
(1.2) 

00 

= Wo + L i ( ewo z f . 
n=l 
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The series converges for lewo zl = lzl eRewo < 1. or 

lzl < e-Rewo. 

The second line of (1.2) is 

1 
f(z) =wo+log--- 1- ewoz 

Solution #2 

The second line of (1.1) is the same as 

J' (z) e-f(z) = 1. 

If there is a solution on Di., it must satisfy 

z 

z = j f' (w) e-f(w)dw 

0 

Rearrangement yields the same function (1.4). 

(1.4) 

Problem 2 Let O < r < 1, and denote by Cr the circle of radius r, with the 
positive (counterclockwise) orientation. Prove that 

J 1 
+l dz = 2ni (n + 1) r 2

, n ~ 0. 
(1-z)11 

c,. 

What about n < 0 ? 

Solution 

If z E Cr, then z = ,; , and the integral may be rewTitten 
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Since r 2 < r < 1, the Cauchy integral formula for the n th derivative implies 

= 21ri ( n + 1) r 2
• 

If n < 0, then (l-;)n+i = (1 - z)-n-l is a polynomial in z, 

The only power with a nonzero integral is the first, and therefore 

./ (1 - z)-n-i dz = ( -n - 1) / - zdz = 21ri ( n + 1) r2
. 

Cr ' 

Problem 3 Let f (·) be holomorphic on a neighborhood, U, of a point z0 . 

Define g (·) on U by 

g (z) = { (3.1) 
J' (zo), z = z0 

Give TWO proofs that g (·) is holomorphic on U. For each proof, cite care­
fully theorem(s) about holomorphic functions that imply the statement under 
consideration 

Solution #1 

Since limg (z) = g (z0 ), g (·) is bounded and holomorphic on a punctured 
z~zo 

disc about z0 • The Riemann Removable singularities theorem says that g 

extends to be holomorphic on the unpunctured disc. Since the extension is, 
in particular, continuous, the function (3.1) is holomorphic. 

Solution #2 
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Since f ( ·) is holomorphic on U, the Taylor series of f converges locally 
uniformly to f on a disc, .6., about z0 , 

= j(n) ( ) 
f ( ) _ ~ Zo ( _ )n z -L I z zo . 

n. 
n=O 

Therefore, if z =I zo, 

f (zl = :0 (zo) = J' (zo) + f j(n:~zo) (z - zor-1. 
n=2 

The power series converges on .6. and is zero at z0 . Therefore, g ( ·) is holo­
morphic. 

Problem 4 Let f 2:: 0 be real-valued and measurable on R Denote by m the 
Lebesgue measure on JR. Prove that, whether or not f is integrable, 

lim 
N_.cx, 

(4.1) 

Solution 

Let fN be the function 

(4.2) 

Since f takes values in JR, it is true that for all x 

lim fN (x) = f (x), x E JR. 
N->oo 

(4.3) 

The Monotone Convergence Theorem implies for each N that 

(4.4) 
L oo 

= l~1!L ~m u-1 ((~, ktll)) = L ~m u-1 ((~, ktll)) . 
k=O k=O 
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By (4,2)-(4.4) and Fatou's Lemma 

f f (x) m (dx) 2:: limsup j fN (x) m (dx) 
N-->oo 

JR JR 

2:: lim infjfN (x) m (dx) 2:: ;·f (x) m (dx) 
N-->oo 

JR IR 

Problem 5 Let f be a function on the (x, y) plane. Assume that for each 
fixed x(resp. for each fixed y) f (x, y) is continuous in y(resp.f (x, y) is con­
tinuous in x). Prove that f is a Borel function on the plane. Hint: You may 
wish to consider the functions 

fmn (x,y) = f --, - ,1n,n > 0. (
[mx] [ny]) 

' m n 

~w] = max { n E Zin :s; w} is the greatest integer function.) 

Solution 

For all y E IR it is true for n > 0 that 

[ny] :s; ny < [ny] + 1. 

Therefore, 
. [ny] 

hm-=y. 
n-->oo n 

The functions fm,n ( x, y) are Borel ( constant on each rectangle, R1n,n ( k, l), 

R.nn(k,l) = -,-- X -,-- ,k,l E Z, [k k+l) [l l+l) 
' m m n n 

of a partition of IR2 into rectangles). By the assumption on f, 

. ([mx] ) hm fm,n(x,y) = f --,y , all m > O,x,y E IR. 
n---too 1n 

Since a pointwise everywhere limit of a sequence of Borel functions is Borel, 
the functions 

(
[mx] ) 

fm (x, y) = f --:;;;:-, Y 
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are Borel for all m. Once again, the assumption on l implies 

lim lm (x, y) = l (x, y) 
'ln---+CXJ 

and l (x, y) is Borel. 

REMARK 

On the Continuum Hypothesis, there exists on the plane a function that is 
not even Lebesgue measurable and which has the property that restricted 
to any line in the plane it has at most two discontinuities. (Notes attached.) 

Problem 6 let l be measurable on 'JR, and assume that both l (x) and xl (x) 
are integrable with respect to Lebesgue measure, m. Define F (y) on 'JR by 

F (y) = /1 (x) sinxy rn (dx). 

IR 

Prove that F is diff crentiable on 'JR and that 

F' (y) = .l xl (x) cos(xy) m (dx). (6.1) 

IR 

Solution 

For all x, y and J /: 0 the mean value theorem implies there is a point 
~ (x, y, J) strictly between y and y + 5 such that 

I 
sinx[y+J]-sinxy I = j ( c ( . s:))j 

8 xcos X<,, x,y,u 

:::_; jxj 

Now, use the assumption that xl (x) is Lebesgue integrable: As 

and 

F' (y + J) - F' (y) = jl ( x) sin x (y + J) - sin xy m ( dx) 
J J 

IR 

If (x) sinx [y + ; ] - sinxy I :::_; lxl (x)I' 
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the dominated convergence theorem implies that (6.1) is true. 

REMARK ON PROBLEM 5: 

A REASON TO OPPOSE 

THE CONTINUUM HYPOTHESIS 

Let (E, ~) = E be a nonempty partially ordered set. E is well-ordered 
if every nonempty subset of E has a least element. Notice that if x , y E E, 
then either x = y or one of the inequalities x < y, y < x must hold. That is, 
a well-ordered set is totally ordered. An induction argument shows that 
any nonempty finite subset of a well-ordered set has a maximum element . 

If Eis well-ordered, if x E E, and if 

S(x) d~ {y E El x < y} =/ 0. 

then S(x) has a least element, which we denote by 

a (x) = min S(x). 

Refer to a ( x) as the successor of x. There are two kinds of elements of 
E, successors and limit elements, i.e., elements which have no immediate 
predecessors. Example, 

E = {O, 1, 2 , · · ·, oo}. 

with the natural order. oo is not a successor. 
If (E, ~) is nonempty and well-ordered, there exists a least element of E. 

Define 
0 = min E. 

For any x EE define an "interval" [O, x) by 

[O, x) = {yl y < x}. 

Proposition 7 Let (E, ~) = E be an uncountable well-ordered set. Define 
Ew ~ E by 

Ew = {xi [O, x) is countable}. 

Then Ew is an uncountable "initial segment II of E. That is, Ew is an un­
countable set, and if x E Ew, then [O,x) C Ew. 
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Proof. If Ew were countable, the assumption that E is uncountable implies 
the set 

Since it is nonempty, E has a smallest element. Let z = min E. If x < z < y, 
then by definition x E Ew. Since [O, z) C [O, y) and [O, z) is uncountable, [O, y) 
is uncountable. In particular, y (/:. Ew. Therefore, Ew = [O, z), contradicting 
the assumption that Ew is countable. • 

The proposition implies that an uncountable well-ordered set E contains 
an uncountable well-ordered subset with the property that each of its initial 
segments is countable. From now on we assume fixed 

(E, :s;) an uncountable well-ordered set 

such that (CHl) 

[O, x) is countable, all x EE. 

To see that such a set exists, begin with any uncountable set, F, e.g., the set 
of all subsets of the integers, apply the axiom of choice to well order F, and 
then use the discussion above to see that E = pw has the desired property. 

We now state one assumption and one known fact: 

ASSUMPTION: 

The continuum hypothesis is true. The set (CHl) has (CH2) 

the same cardinality as the set of real numbers. 

FACT 

The set, B (JR.2
), of Borel sets has the same cardinality (CH3) 

as the set of real numbers. 

A PDF of a proof of (CH3), which does not require the continuum 
hypothesis, is available upon request to interested students. 

Theorem 8 There exists a set D C JR.2 such that 
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1. For any line L c JR2 , L n ft contains at most two points. 

2. ft contains no unc01mtable Borel set. 

3. If B C JR2\f1 is a Borel set, then B is contained in a countable union 
of lines. 

4. ft is not Lebesgue measurable. 

Proof. Denote by Be (JR2
) the set of uncountable Borel sets. By (CH2) and 

(CH3), there is a one-to-one and onto map, 

We shall make an inductive construction of points 

p(x) ,q(x), x EE. 

First, choose for x = 0 = min ( E) 

p(0), q (0) E Bo, p(0) =/-q (0). 

Now assume O < y E E and that the construction has been made for O ~ 
x < y with properties now to be described. Define 

Assume 

ft(y) = {p(x)I x < y} 

A(y) = {q(x)I x < y}. 

A. For any line LC JR2 , L n ft(y) contains at most two points. 

B. A(y) n n (y) = 0. 

C. If x < y is such that Bx is not contained in a countable union of lines, 
then p(x) E Bx. Otherwise, p(x) = p(0). 

D. If x < y, then q(x) E Bx. 
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We shall construct the values p(y), q(y). 0 (y) is a countable set because 
[O, y) is countable for each y EE. Therefore, the set of pairs of distinct points 
in O (y) determines a countable set of lines. Denote the union of these lines 
by r(y). If By is contained in a countable uuion of lines, define p(y) = p(O). 
If By is not contained in a countable union of lines, By \f(y) cannot be 
a countable set. For By \r (y) were countable, it would also determine a 
countable set of lines whose union with f(y) would contain By. Now choose 
p(y) E By\f(y). Having chosenp(y), define 

0 (er (y)) = 0 (y) U {p(y)}. 

Now to choose q(y). Let q (y) be any point in the uncountable set By \0 (er (y)) . 
Let 

A (er (y)) = A (y) u {q(y)}. 

The induction hypothesis and the fact p(y) = p(O) or p(y) E By \f(y) imply 
that no line contains more than two points of O ( er (y)). This is Property A. 
Since p(y) =/= q(y) and p (y) rj:_ A (y) , q (y) rj:_ 0 (y), it is true that Property B 
holds for er (y). The induction hypothesis and the choices of p (y) and q (y) 
imply Properties C. and D. for cr(y). The construction is now completed by 
induction. Define D, A C IR2 by 

[2 = {p(y)I y EE} 

A={q(y)lyEE} 

AnD = 0. 

The last line is due to B. If B E Be (IR2
), then B = By for some y E E. 

By D. q(y) E A(cr(y)) c A c JR.2\0. Therefore, B i D, and 2. is true. 
Suppose that B E Be (IR2 ) is not contained in a countable union of lines. 
If B = By, then by C. p(y) E B. Therefore, B i A, and 3. is true. If 
L C IR2 is a line, and if L n [2 contains at least three points, there would 
exist y E E such that L n D(y) contains at least three points, contradicting 
A. Therefore, 0 satisfies 3. Finally, if O is Lebesgue measurable, 0 must 
be a null set. For otherwise, the inner regularity of Lebesgue measure would 
imply that [2 contains a compact, in particular Borel, set of positive measure, 
in violation of 2. If [2 is a null set, then A is a Lebesgue measurable set 
of positive (infinite!) measure. Again applying inner regularity, A would 
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contain a Borel set of positive measure. Such a set cannot be contained in 
a countable union of lines, in violation of 3. We conclude that n is not a 
Lebesgue measurable set. • 
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