Analysis Exam, January 2007

1. (a) Give an example of a pointwise convergent sequence of smooth real-valued functions $g_{n}:[-1,1] \rightarrow[-1,1]$ whose derivatives g_{n}^{\prime} do not converge at almost every point of $[-1,1]$. (b) Suppose $D=\{z \in \mathbf{C}:|z|<1\}$. Prove that if $f_{n}: D \rightarrow D$ is a pointwise convergent sequence of holomorphic functions, then the derivatives f_{n}^{\prime} converge at every point of D.
2. Suppose $1 \leq p<q<\infty$
(a) Either prove $L^{q}([0,1]) \subset L^{p}([0,1])$ or find a specific function $g \in L^{q}([0,1]) \backslash L^{p}([0,1])$.
(b) Either prove $L^{q}(\mathbf{R}) \subset L^{p}(\mathbf{R})$ or find a specific function $g \in L^{q}(\mathbf{R}) \backslash L^{p}(\mathbf{R})$.
3. (a) Given distinct complex numbers a, b, c, d, find a holomorphic $f: \mathbf{C} \rightarrow \mathbf{C}$ such that $f(a)=b$ and $f(c)=d$.
(b) Assuming moreover that a, b, c, d lie in the unit disk D find, if possible, a holomorphic $f: D \rightarrow D$ such that $f(a)=b$ and $f(c)=d$.
(c) Find, if possible, a nonconstant holomorphic $f: \mathbf{C} \backslash\{0\} \rightarrow \mathbf{C}$ with $f(1 / j)=0$ for $j=1,2, \cdots$.
(d) Find, if possible, a nonconstant holomorphic $f: D \rightarrow D$ with $f(1 / j)=0$ for $j=1,2, \cdots$.
4. Suppose that $g:[0,1] \rightarrow[0,10]$ is an increasing function.
(a) Show that $g_{-}(a)=\lim _{t \uparrow a} g(t)$ and $g_{+}(a)=\lim _{t \downarrow a} g(t)$ exist for all $a \in(0,1)$ and that the set of discontinuities $E=\left\{a: g_{-}(a) \neq g_{+}(a)\right\}$ is at most countable.
(b) Try to find a good upper bound for $\sum_{a \in E} g_{+}^{2}(a)-g_{-}^{2}(a)$.
5. Suppose $f: \mathbf{C} \rightarrow \mathbf{C}$ is a holomorphic function with zeros $a_{1}, a_{2}, \cdots, a_{k}$ in the unit disk of multiplicities respectively $m_{1}, m_{2}, \cdots, m_{k}$.
(a) Find the poles, with their orders, and the residues of the meromorphic function f^{\prime} / f.
(b) Describe the quantity $\sum_{j=1}^{k} m_{j} a_{j}^{3}$ as an integral over the unit circle of some expression involving f and its derivatives.
6. Let λ_{n} denote n dimensional Lebesgue measure.
(a) Suppose that $A \subset[0,1] \times[0,1]$ is a Lebesgue measurable with $\lambda_{2}(A) \geq 1 / 3$. Show that

$$
B=\left\{x \in[0,1]: \lambda_{1}\{y:(x, y) \in A\} \geq 1 / 4\right\} \text { has } \lambda_{1}(B) \geq 1 / 9
$$

(b) Suppose that $\alpha:[0,1] \rightarrow \mathbf{R}$ and $\beta:[0,1] \rightarrow \mathbf{R}$ are continuous. Together these define the curve $\gamma(t)=(\alpha(t), \beta(t))$ in \mathbf{R}^{2}. Recall that the length of γ is given by

$$
L=\sup \left\{\sum_{i=1}^{j}\left|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right|: 0=t_{0}<t_{1}<\cdots<t_{j-1}<t_{j}=1\right\}
$$

Prove that

$$
L \leq \int \#(\{t: \alpha(t)=x\}) d x+\int \#(\{t: \beta(t)=y\}) d y \leq 2 L
$$

(where $\#(E)$ is number of points, possibly infinite, in E).

