Analysis Exam, January 2008

1. (a) Construct a dense open subset U of \mathbf{R} with Lebesgue measure $\lambda(\mathbf{U})<1$.
(b) Does there exist a measurable set E of positive measure with the property that

$$
\lambda(E \cap[a, b]) \leq \frac{1}{2}(b-a) \quad \text { for all } \quad-\infty<a<b<\infty ?
$$

If so, give an example. If not, give a reason why not.
2. Compute the Principal Value integral

$$
\text { P.V. } \int_{-\infty}^{+\infty} \frac{1}{x^{3}-1} d x=\lim _{\varepsilon, 0}\left[\int_{-\infty}^{1-\varepsilon} \frac{1}{x^{3}-1} d x+\int_{1+\varepsilon}^{+\infty} \frac{1}{x^{3}-1} d x\right] .
$$

3. Suppose

$$
F(z)=a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{n} z^{-n}+\cdots
$$

where

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq\left|a_{1}\right|
$$

(a) Prove that F is holomorphic on the exterior region $\Omega=\{z \in \mathrm{C}:|z|>1\}$.
(b) Prove that $\lim _{z \rightarrow \infty} F(z)=a_{0}$.
(c) Prove that F is one-to-one on Ω.
4. Suppose $f_{1} \leq f_{2} \leq f_{3} \leq f_{4} \leq \cdots$ are real-valued differentiable functions on \mathbf{R} which satisfy

$$
f_{n}(0)=0 \text { and }-1 \leq f_{n}^{\prime}(t) \leq+1 \quad \text { for all } n=1,2, \cdots \text { and } t \in \mathbf{R}
$$

(a) Show that $f(t)=\lim _{n \rightarrow \infty} f_{n}(t)$ exists and is finite for all $t \in \mathbf{R}$.
(b) Is f necessarily continuous? If so, prove it. If not, find a counterexample.
(c) Is f necessarily differentiable? If so, prove it. If not, find a counterexample.
5. (a) Is it true of the functions f_{n} from problem 4 that

$$
\int_{a}^{b} f(t) d t=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(t) d t \text { for all } \quad-\infty<a<b<\infty . ?
$$

If so, then prove it. If not, find a counterexample.
(b) Prove that, for any finite sequence $-\infty<a_{0}<a_{1}<\cdots<a_{n}<\infty$, one has

$$
\sum_{i=1}^{n}\left|f\left(a_{i}\right)-f\left(a_{i-1}\right)\right| \leq \liminf _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f_{n}^{\prime}(t)\right| d t
$$

(c) Give an example of such a sequence where

$$
\sup _{-\infty<a_{0}<a_{1}<\cdots<a_{n}<\infty} \sum_{i=1}^{n}\left|f\left(a_{i}\right)-f\left(a_{i-1}\right)\right|<\liminf _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left|f_{n}^{\prime}(t)\right| d t
$$

6. Is the following function

$$
f(z)=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \cos \left(3^{n} z \pi\right)
$$

holomorphic on the entire complex plane? If so, explain. If not, describe the set of points where this series fails to converge.

