Solutions to Qualifying Examination
Analysis
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January 11, 2016

Problem 1

Let f be an entire function. It is given that

k —
1(3) =Sk )

Identify f and state carefully any theorem that allows you to do so.

Solution

Define g (2) = 2 — 2. Then

1 I!.T -— l .l
== =gl £>1.
/ (/‘:) k2 g (/-:) LE

The entire functions [ and ¢ agree on the set £ = {%, k> 1}. The identity
theorem says that if two holomorphie functions on a region 2 agree on a set
that has an accumulation point in §2, then they agree on all of 2. Therefore,

f{z) = 2 =252 €T

Problem 2



Establish the identity

oo

ts-—l
/ dt = ,7T MR R
14+t sinms

0
Solution

Let log z be the principal branch of the logarithm on C\ [0, c0). The boundary
values of this function satisfy

Int, from above
logt =
Int + 273 from below.

Fix § € (0,1),T > 1, and consider the integral of

h (z) _ e(s—1)logz

142
ts—l
¢ from above
hit)= ;830
2mi(s—1) 51 __ 2mistsT!
e o = € 4 from below.

over the closed curve
QyT = C;: + 7;1.5 + 0‘5— + ’)’;{T

comprised of the circle Cf = {|z| = T}, counterclockwise, the path vz 5 from
T to 6 on the "lower side" of the axis, the circle C; = {|2| = ¢}, clockwise
and the path 'y"{T from 6 to T" on the "upper side" of the axis. o5 bounds a
simply connected region, and therefore the Cauchy Integral Formula implies

|

il h dz = (s—1)log(—1) =— 7ris.
57 (z2)dz=¢e e
a5 T
As
s—1¢€(-1,0)
and
e(s-—l)]ogz - |z|—(1-’)
1+=z 114z|




the integral over Cft (resp. Cj) is bounded by O (T-(079) = o(1) (resp.

0 (5 : 5—(1—S>> = 0(6*) = 0(1). Conclude that

—g = h(z)dz

— omi

a5 T

T

L8 p=d
= (1-é )#/aﬁdt—i—o(l)
é

2mi

= €™ (—2isinTs) L/Edt +0(1).

Let T'— 00,6 — 0 and find that

oo

ts_l
dt = -
1+t sinws

0

as required.

Problem 3
This problem has five parts, with one page per part.

3.1. Compute the limit

) ( T N2 1
z—0 SINTTZ Z

1)

Remark that your answer implies that for each integer n the function

(sin7r1rz>2 a (2 _ln)2

has the same limit as (1) at z = n.



Solution

The second claim follows from the first and the periodicity of (sin’rm)2. As

for the first claim, Taylor’s formula implies sin 7z = 7z — (L;,)—s +0(2%), and

therefore

(55) b=k %
sinmz % z (1_ 7{;2_1_0(22)) z
1 (mz)® a2 _ 1
=z—2(1+T+o(z)) ~L="40().

& 2
The answer is %

3.2. (Problem 3, continued.) You may assume that the series

i(zin)Q,zeC\Z

converges locally uniformly to a holomorphic function on the region
C\Z. Define a function ¢ (z) on C\Z by

Why does Part 3.1 allow you to conclude that ¢ extends to an entire
holomorphic function?

Solution

The first part of the problem implies that ¢ (2) is bounded in a neighborhood
of each integer. By the removable singularities theorem, ¢ extends to be
entire.

3.3. (Problem 3, continued.) Establish the inequality

|sin mz| > max (|sin 7z| cosh 7y, |cos wz| [sinh wy|) , z = x+iy € C. (3)



Use (3) to prove that (= )2 is uniformly bounded on both

sinmz

(A) The union of the vertical lines, Rez =n + ,n € Z.
and (4)
(B) The union of the horizontal lines, Imz =y, |[y| > 1.

Solution

One has
SIN Tz = SIn & CoS MY + COS X SIN MY

= sin 7wz cosh my — 2 cos wz sinh my.

Since |sin 72| > max (|[Resin7z|, [Imsin z|), (3) follows. (4) is then an easy

consequence.

3.4. (Problem 3, continued.) You may assume that the function Z ( zin)2

is also uniformly bounded on the lines (4). What can you then say
about the function ¢ in (2)7 (You may assume the statement in Part
3.3, even if you have been unable to prove it.)

Solution

For each n > 0 the lines Rez = + (n + %) and Im z = +n determine a rec-

tangle, I?,,. The maximum principle implies that |¢| |z, attains its maximum

on OR,. As ¢ is uniformly bounded on U OR,, @ is entire and bounded.
n>1

Liouville’s Theorem implies that ¢ is constant.

3.5. (Problem 3, continued.) Prove that lim¢ (y) = 0. What does this

Yy—00

imply and why?

Solution

D



Let y > 1 tend to +oco0.

o (iy)| = (Sin’;iy)Q = _Z (iyl_n)Q
_} <$)2_§;(W;)2 o)+ i(i;n)Q
So(l)+iﬁ§o(l)+;}7+7ﬁ—tyz=o(1).

Since Part 4 implies ¢ is constant, the constant must be zero. Therefore,

T 2 e 1 2
(Sin7r2> B ; (3 - n) ,z € C\Z.

Problem 4

NOTATIONS and ASSUMPTIONS. Denote Lebesgue measure on the
unit interval by m(-) and in integrals by m (dz). Assume that f > 0 is
Lebesgue measurable on [0, 1]. Assume in addition that

m({z|f (x) > t}) =e*,t > 0.
This Problem has three parts, one page per part.

4.1. Prove that f € LP (m),0 < p < 0.

Solution

Define E, = f~([n.n+1)),n > 0. By assumption,
m(Ey) =e ™) e = (e—1).

Then -
FO D kg,
k=1

[ep]



The ratio test implies

/f” dxﬁe—le”e < 0.
k=1

0,1]

2. (Problem 4, continued.) Prove that the integral of f? over [0, 1] equals
the improper Riemann integral of ptP~te™* over [0, 00). That is, prove

/f”(x (dz) p/t” le~tdt,p > 0. (1)

(0,1]

(Two solutions are described below.)

Solution #1

This solution relies on the Fubini Theorem. One has

f(z)
P (z pt?P~ldt | m (dz)
Jrome=J\
= [ | [rrxosmen @) m@a) = [ | [o %009 (@)t | m 0
01 \0 [0,1] \O
P [t | [ (F @) mde) | = [pim (s ) 2 )
0 d.ll 0

P / ptP~letdt.
0

The last integral has continuous integrand (on (0, 00) when p € (0,1)). The
monotone convergence theorem implies
lim [ ptP e tdt = /ptp—le_tdt.

n—oo

0

e



The integrals on the left may be taken to be Riemann integrals, and therefore
the limit on the right is an improper Reimann integral.

Solution #2

This solution relies on the Abel summation formula,

q q—1
Zakbk = ZA,C (b —bk1) + Agdy — Apib,,r<p<g< oo
k=p k=p

where
g, 82T
As = { ; ’
0, s¢r
(Abel)
Let 0 < a < b < co. Restrict attention to the measurable set
Ua,b = f_l ([a’a b)) :
We shall prove that
b
/fp (x)m (dx) = p/tp_lc_tdt +e %P — e P, p > 0. (2)
Uayp a

The monotone convergence theorem implies that if @ — 0,6 — oo through
sequences, the left side tends to the left side of (1), and the right side tends to
the right side of (1). (While the right side will be computed in the Riemann
sense, the fact that the Riemann integral and Lebesgue integral of a Riemann
integrable function are equal allow application of monotone convergence on
the right.) Now for each n > 0, partition U, , into measurable sets

UD k)= (a+EL(-a),a+E(b-a))

&

" (U(E:Z) (k)) _ (e—(a+k—;1(b—a)) - e—(a+§(b—a))> 1<k<n.



The integral on the left of (2) is well approximated by the sum

n

> (a+Ep-a)m (U8 ®)

k=1

3

=3 (e +E(b—0) (e (+FE0) — e(etre-a))
k=1

Let a, = (¢ (509 - i) and b, = (a+ £ (= a))". Apply

(Abel) to rewrite (3) as

n—1

Z (e_“ - e_(”%(b—a))) ((a +E@b-a) - (a + (knﬂ (b~ a)>p> +

k=1

+(e—e )P
(4)
=e((a+i(0—a)" =)+ (e —et)tP

+ e lerto9) (a1 B2 o)) — (a4 £ - 0))).

By the mean value theorem, there exists §; ,, € (a +Eb-a),a+ (k%l) (b— a))
such that

(o Ep-a) — (or BED o) =t

n

Therefore, the sum on the last line of (4) is an approximating sum for the
Riemann integral of the function ptP~le™®. Letting n — co the extra terms
approach e™®a? — e~%P. Were one to use the method of solution #1, one



would look at

/ 7 (z)m (dz) = / Xfa] (f (z)) (7;tp‘1dt) m (dz)

0,1] 0
= / Xja) (f () ( / PP X0, 7y (t) dt) m (dz)
0,1] 0
Xa (f (/ptp_IX[t,oo) (f (2)) dt) m (dz)
0,
P [t F @) X (F (D) () |

0 0,1]

a

= /pt”_lm (Uap) dt + ‘/b‘;utp—l ]‘m {zlt < fz) <b}) | at

0 0,1]

b
Ful:)iui aP (e_a . e__b) + /ptp—le—tdt _ e—b (bP - aP)
a
2
= /p!}’"le“tdt +e %P — e P,

a

4.3. (Problem 4, continued.) Use (1), even if you were unable to prove it,
to establish the bound

/j”( )m(rh)—%Za‘(%)}‘ S%|n>0-

(),l] =l

10



(Hint: Consideration of F, (z) = f?(z) and the case p = 1 of (1) for
F, (z) might help.)

Solution

Let F, (z) = f (z)?. Then

1

m({alF, (2) 2 7} =m ({alf @) 2 77 }) =

One has
[P @ms) = [FEmn@
(0,1] [0,1]
s 1
= /e‘”’dt.
0
Given n > 1, partition [0, c0) into intervals [k—;—l, %), k> 1. We have
0 1
1@ < [ p@ma
k=1 6]
[ee] _ &
< %Z (D
k=1

The sums are identical but for the extra summand, which is 1, on the right.
Therefore, either sum approximates the integral to within %

Problem 5

This problem has two parts, one page per part. Let f, > 0 be Lebesgue
measurable on R for all n > 1, and assume

/fn (z)dx =100,n > 1
R

lim f, (z) = f (z) exists a.e. z.

n—0a

11



5.1. Is f integrable? If your answer is ’yes’, cite a theorem in support of it. If it is 'no’,
explain why there is a counterexample.

Solution

Yes. Direct application of Fatou’s Lemma implies

/' f (@) de < 100.
§

5.2. (Problem 5, continued.) Assume / f (z) dz = 31. Do there exist T < oo
R

and ng such that / fa(z)dz > 30.9,n > ny? If your answer is

[—T,T]
'yes’, cite theorem(s) in support of it. If it is 'no’, explain why there is a counterexample.

Solution
Since f is nonnegative, the monotone convergence theorem implies that

lim / f{z)dz = 31.

L—co
[—L,L]

Select L so that
/ f(z)dz=309+46,6 >0.
[-L,L]
Fatou’s Lemma implies that

liminf fulz)de 2> / f(z)dz = 30.9+ 4.

n—oo
[-L,L) [—L,L]

12



Therefore, there exists ng such that

/ fn(x)dz > 30.9,n > ng

[_Lv[‘]

Problem 6

NOTATIONS and ASSUMPTIONS Let A C (0,1) denote the set of
points such that the inequality

admits an infinite number of reduced rational solutions ’5’ € (0,1), ie.,
with ¢ > 0 and p, ¢ relatively prime with 1 < p < ¢. This problem has three
parts, one page per part.

6.1. For each pair (p,q) define an appropriate interval J (p,q) and by care-
fully filling in the ranges of n,p, ¢ below, represent the set A as

=0V {pres))

Solution

-
o

Let § € (0,1), with p,q relatively prime. Define J (p,q) to be the open
I ={ze @] fo-?

interval ’
< q_} _
Now, A is the (Gs) set

A= UL U T

g2n \ (p,g)=1,p<q

6.2. (Problem 6. continued.) Can you say that A is a Borel set? Why?
Your answer should include the definition of 'Borel set.

13



Solution

The Borel sets are the sets in the o-algebra generated by the open sets.

U U J (p,q) is an open set, and therefore A is a Borel set,

g2n \(p,q)=1,p<q
even a Gs.

6.3. (Problem 6. continued.) What can you say about the Lebesgue measure
of A7 Explain your answer.

Solution

The number of p < ¢ such that (p,q) = 1 is bounded by q. Therefore the
measure of U J (p,q) is bounded by g - q% = q%. Therefore, by the

(p)=1,p<q
integral test,

m U U J(p,q) SZ%=0(1).

qzn \ (pg)=1,p<q >n

By definition, A C U U J(p,q) |, and therefore, m (A) = 0.

g2n \ (p,g)=1,p<q
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