This is a 3 hour, closed book, closed notes exam. For maximum credit include justification for all steps. Sign the Rice honor pledge at the end of your exam.

1. Let \(f : S^n \to S^n \) be a smooth map with no fixed points. Prove that the degree of \(f \) is \((-1)^{n+1}\).

2. Let \(L_1 \) and \(L_2 \) be disjoint straight lines in \(\mathbb{R}^3 \). Calculate \(\pi_1(\mathbb{R}^3 \setminus (L_1 \cup L_2)) \).

3. Let \(W = S^1 \vee S^1 \). Construct three connected 3-fold covers of \(W \) that are distinct up to covering space equivalence, including at least 1 irregular cover. For each of these three covers, describe the covering map, say whether or not the cover is regular, and give the corresponding subgroup of \(\pi_1(W) \).

4. For \(n \geq 2 \), prove that for any continuous map \(f : \mathbb{C}P^n \to S^2 \), the induced map \(f_* : H_2(\mathbb{C}P^n; \mathbb{Z}) \to H_2(S^2; \mathbb{Z}) \) is the zero map.

5. Give an example (a CW complex) for each of the following or state that such an example does not exist. Give a brief justification in all cases.

 (a) Two spaces with isomorphic \(\pi_1 \) but non-isomorphic integral homology groups.

 (b) Two spaces with isomorphic integral homology groups but non-isomorphic \(\pi_1 \) (give \(\pi_1 \) of the spaces).

 (c) Two spaces with isomorphic integral homology groups but non-isomorphic cohomology groups.

 (d) Two spaces that are homotopy equivalent but not homeomorphic.

 (e) Two spaces with isomorphic \(\pi_1 \) and isomorphic integral homology groups that are NOT homotopy equivalent.

6. Let \(M \) be a compact contractible \(n \)-manifold with boundary. Prove that \(\partial M \) is a homology \((n - 1)\)-sphere, i.e. that \(H_i(\partial M; \mathbb{Z}) \cong H_i(S^{n-1}; \mathbb{Z}) \) for all \(i \).