Analysis Exam, August 2020

Please put your name on your solutions, use 8 $1/2 \times 11$ in. sheets, and number the pages.

1. Let K be a compact metric space and $F : K \times [0,1] \to \mathbb{C}$ a continuous function. Define $f_n, f : K \to \mathbb{C}$ by

$$f_n(x) = F\left(x, \frac{1}{n}\right), \qquad f(x) = F(x, 0).$$

Prove that the sequence f_n converges uniformly to the function f.

- 2. Suppose that $M \subset [0,1]^n$ is a Borel set with positive Lebesgue measure. Prove that there is some point $x \in \mathbb{R}^n$ such that, for every coordinate vector e_i , the line ℓ_i through x in direction e_i has the property that $\ell_i \cap M$ is a Borel subset of \mathbb{R} and has positive measure.
- 3. Suppose that $f: [-1,1] \to \mathbb{R}$ is a nonnegative C^{∞} function with f(-1) = f(1) = 0. Let f^* be the unique nonnegative function which is radially symmetric $(f^*(x) = f^*(y) \text{ for all } |x| = |y|)$, which is nonincreasing $(f^*(x) \ge f^*(y) \text{ for } |x| \le |y|)$, and such that $f^{-1}((c,\infty))$ has the same Lebesgue measure as $(f^*)^{-1}((c,\infty))$ for all $c \in \mathbb{R}$. You may use the fact that f^* is C^{∞} without proof.
 - (a) Suppose that $p \ge 1$. How does $||f||_{L^p}$ compare to $||f^*||_{L^p}$?
 - (b) Prove that

$$\int_{-1}^{1} |f'(x)| dx \ge \int_{-1}^{1} |(f^*)'(x)| dx.$$

- 4. Let $\mathbb{C}_+ = \{z \in \mathbb{C} \mid \text{Im} \, z > 0\}$. Let $f : \mathbb{C}_+ \to \mathbb{C}$ be an analytic function. Assume that for all $z \in \mathbb{C}_+$ such that |z| = 1, $f(z) \in \mathbb{R}$. If f has no zeros with |z| < 1, prove that it has no zeros with |z| > 1.
- 5. Let f(z) be an entire holomorphic function. Suppose that there are positive real numbers a, b, and k such that $|f(z)| \le a + b|z|^k$ for all $z \in \mathbb{C}$. Prove that f(z) is a polynomial.
- 6. Let $\mathbb{C}_+ = \{z \in \mathbb{C} \mid \text{Im} z > 0\}$. If $f : \{z \in \mathbb{C} \mid |z| > 1\} \to \mathbb{C}_+$ is analytic, prove that the limit $\lim_{z \to \infty} f(z)$ is convergent.