Analysis Exam, August 2020

Please put your name on your solutions, use $81 / 2 \times 11$ in. sheets, and number the pages.

1. Let K be a compact metric space and $F: K \times[0,1] \rightarrow \mathbb{C}$ a continuous function. Define $f_{n}, f: K \rightarrow \mathbb{C}$ by

$$
f_{n}(x)=F\left(x, \frac{1}{n}\right), \quad f(x)=F(x, 0)
$$

Prove that the sequence f_{n} converges uniformly to the function f.
2. Suppose that $M \subset[0,1]^{n}$ is a Borel set with positive Lebesgue measure. Prove that there is some point $x \in \mathbb{R}^{n}$ such that, for every coordinate vector e_{i}, the line ℓ_{i} through x in direction e_{i} has the property that $\ell_{i} \cap M$ is a Borel subset of \mathbb{R} and has positive measure.
3. Suppose that $f:[-1,1] \rightarrow \mathbb{R}$ is a nonnegative C^{∞} function with $f(-1)=f(1)=0$. Let f^{*} be the unique nonnegative function which is radially symmetric $\left(f^{*}(x)=f^{*}(y)\right.$ for all $\left.|x|=|y|\right)$, which is nonincreasing $\left(f^{*}(x) \geq f^{*}(y)\right.$ for $\left.|x| \leq|y|\right)$, and such that $f^{-1}((c, \infty))$ has the same Lebesgue measure as $\left(f^{*}\right)^{-1}((c, \infty))$ for all $c \in \mathbb{R}$. You may use the fact that f^{*} is C^{∞} without proof.
(a) Suppose that $p \geq 1$. How does $\|f\|_{L^{p}}$ compare to $\left\|f^{*}\right\|_{L^{p}}$?
(b) Prove that

$$
\int_{-1}^{1}\left|f^{\prime}(x)\right| d x \geq \int_{-1}^{1}\left|\left(f^{*}\right)^{\prime}(x)\right| d x
$$

4. Let $\mathbb{C}_{+}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$. Let $f: \mathbb{C}_{+} \rightarrow \mathbb{C}$ be an analytic function. Assume that for all $z \in \mathbb{C}_{+}$such that $|z|=1, f(z) \in \mathbb{R}$. If f has no zeros with $|z|<1$, prove that it has no zeros with $|z|>1$.
5. Let $f(z)$ be an entire holomorphic function. Suppose that there are positive real numbers a, b, and k such that $|f(z)| \leq a+b|z|^{k}$ for all $z \in \mathbb{C}$. Prove that $f(z)$ is a polynomial.
6. Let $\mathbb{C}_{+}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$. If $f:\{z \in \mathbb{C}| | z \mid>1\} \rightarrow \mathbb{C}_{+}$is analytic, prove that the limit $\lim _{z \rightarrow \infty} f(z)$ is convergent.
