Analysis Exam, January 2020

Please put your name on your solutions, use 8 $1/2 \times 11$ in. sheets, and number the pages.

1. Suppose that $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is such that, for each $t \in \mathbb{R}$, $f^t(x) = f(t, x)$ is a Borel function from \mathbb{R} to \mathbb{R} , and that $f^x(t) = f(t, x)$ is a continuous function from \mathbb{R} to \mathbb{R} for every $x \in \mathbb{R}$. Assume further that there is an integrable $g : \mathbb{R} \to \mathbb{R}$ with $|f(t, x)| \leq g(x)$ for every $x, t \in \mathbb{R}$. Prove that the function f^t is integrable for every $t \in \mathbb{R}$ and the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(t) = \int_{\mathbb{R}} f^{t}(x) dx = \int_{\mathbb{R}} f(t, x) dx$$

is continuous.

2. Prove that

$$f(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{n^2} \right)$$

is an entire function of z and that f(0) = 1 and $f'(0) = -\sum_{n=1}^{\infty} \frac{1}{n^2}$.

- 3. For each of the following, either prove the statement or describe a counterexample:
 - (a) A Borel subset of \mathbb{R} that does not contain any closed interval of the form [a, b] with a < b has Lebesgue measure 0.
 - (b) Every function $f \in L^2([0,1], dx)$ is in $L^1([0,1], dx)$.
 - (c) Every function $f \in L^1(\mathbb{R}, dx)$ is in $L^2(\mathbb{R}, dx)$.
 - (d) If $f : \mathbb{R} \to \mathbb{R}^2$ is continuous, then the set f([0,1]) has zero outer Lebesgue measure in \mathbb{R}^2 .

4. Let
$$a > 0$$
. Evaluate the integral $\int_{-\infty}^{+\infty} \frac{x^2}{x^4 + a^4} dx$

- 5. Recall that a function $f: X \to \mathbb{R}^n$ with $X \subset \mathbb{R}^n$ is called Lipschitz with Lipschitz constant L > 0 if, for every $x, y \in X$, $|f(x) f(y)| \le L|x y|$. Here, $|\cdot|$ is the usual Euclidean norm.
 - (a) Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of Lipschitz functions from [0,1] to \mathbb{R} all with Lipschitz constant L > 0. Prove that there is a subsequence of $\{f_n\}$ that converges uniformly to a Lipschitz function or to $+\infty$ or to $-\infty$.
 - (b) Suppose that $X \subset \mathbb{R}^n$ has outer Lebesgue measure $M \ge 0$, and $f : \mathbb{R}^n \to \mathbb{R}^n$ is a Lipschitz function with Lipschitz constant L > 0. Prove that f(X) has outer Lebesgue measure bounded by CL^nM for some constant C which depends on n only.
- 6. Let $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ and let $f : \mathbb{D} \to \overline{\mathbb{D}}$ be an analytic function.
 - (a) If $z_1 \in \mathbb{D}$ and $f(z_1) = 0$, prove that

$$|f(z)| \leq \left| \frac{z - z_1}{1 - \bar{z}_1 z} \right|, \quad \forall z \in \mathbb{D}.$$

(b) If $z_1, z_2 \in \mathbb{D}$, $z_1 \neq z_2$, and $f(z_1) = f(z_2) = 0$, prove that

$$|f(z)| \le \left| \frac{z - z_1}{1 - \bar{z}_1 z} \times \frac{z - z_2}{1 - \bar{z}_2 z} \right|, \qquad \forall z \in \mathbb{D}.$$