## Analysis Exam, January 2020

Please put your name on your solutions, use $81 / 2 \times 11 \mathrm{in}$. sheets, and number the pages.

1. Suppose that $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is such that, for each $t \in \mathbb{R}, f^{t}(x)=f(t, x)$ is a Borel function from $\mathbb{R}$ to $\mathbb{R}$, and that $f^{x}(t)=f(t, x)$ is a continuous function from $\mathbb{R}$ to $\mathbb{R}$ for every $x \in \mathbb{R}$. Assume further that there is an integrable $g: \mathbb{R} \rightarrow \mathbb{R}$ with $|f(t, x)| \leq g(x)$ for every $x, t \in \mathbb{R}$. Prove that the function $f^{t}$ is integrable for every $t \in \mathbb{R}$ and the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(t)=\int_{\mathbb{R}} f^{t}(x) d x=\int_{\mathbb{R}} f(t, x) d x
$$

is continuous.
2. Prove that

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{2}}\right)
$$

is an entire function of $z$ and that $f(0)=1$ and $f^{\prime}(0)=-\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
3. For each of the following, either prove the statement or describe a counterexample:
(a) A Borel subset of $\mathbb{R}$ that does not contain any closed interval of the form $[a, b]$ with $a<b$ has Lebesgue measure 0 .
(b) Every function $f \in L^{2}([0,1], d x)$ is in $L^{1}([0,1], d x)$.
(c) Every function $f \in L^{1}(\mathbb{R}, d x)$ is in $L^{2}(\mathbb{R}, d x)$.
(d) If $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is continuous, then the set $f([0,1])$ has zero outer Lebesgue measure in $\mathbb{R}^{2}$.
4. Let $a>0$. Evaluate the integral $\int_{-\infty}^{+\infty} \frac{x^{2}}{x^{4}+a^{4}} d x$.
5. Recall that a function $f: X \rightarrow \mathbb{R}^{n}$ with $X \subset \mathbb{R}^{n}$ is called Lipschitz with Lipschitz constant $L>0$ if, for every $x, y \in X,|f(x)-f(y)| \leq L|x-y|$. Here, $|\cdot|$ is the usual Euclidean norm.
(a) Suppose $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of Lipschitz functions from $[0,1]$ to $\mathbb{R}$ all with Lipschitz constant $L>0$. Prove that there is a subsequence of $\left\{f_{n}\right\}$ that converges uniformly to a Lipschitz function or to $+\infty$ or to $-\infty$.
(b) Suppose that $X \subset \mathbb{R}^{n}$ has outer Lebesgue measure $M \geq 0$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Lipschitz function with Lipschitz constant $L>0$. Prove that $f(X)$ has outer Lebesgue measure bounded by $C L^{n} M$ for some constant $C$ which depends on $n$ only.
6. Let $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ and let $f: \mathbb{D} \rightarrow \overline{\mathbb{D}}$ be an analytic function.
(a) If $z_{1} \in \mathbb{D}$ and $f\left(z_{1}\right)=0$, prove that

$$
|f(z)| \leq\left|\frac{z-z_{1}}{1-\bar{z}_{1} z}\right|, \quad \forall z \in \mathbb{D}
$$

(b) If $z_{1}, z_{2} \in \mathbb{D}, z_{1} \neq z_{2}$, and $f\left(z_{1}\right)=f\left(z_{2}\right)=0$, prove that

$$
|f(z)| \leq\left|\frac{z-z_{1}}{1-\bar{z}_{1} z} \times \frac{z-z_{2}}{1-\bar{z}_{2} z}\right|, \quad \forall z \in \mathbb{D}
$$

