Analysis Exam, May 2020

Please put your name on your solutions, use 8 1/2×11 in. sheets, and number the pages.

1. Denote \(\mathbb{C}_+ = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \} \).

 (a) Let \(f : \mathbb{C} \to \mathbb{C}_+ \) be an analytic function. Prove that \(f \) is constant.

 (b) Let \(f : \mathbb{C} \setminus \{0\} \to \mathbb{C}_+ \) be an analytic function. Prove that \(f \) is constant.

2. (a) Let \(f \in L^1([0, 2\pi], dx) \) and define \(\hat{f}_n = \int_0^{2\pi} e^{-inx} f(x) dx \) for \(n \in \mathbb{Z} \). Prove that \(\lim_{n \to \infty} \hat{f}_n = 0 \).

 (b) Prove that there exists a finite positive measure \(\mu \) on \([0, 2\pi]\) such that the Fourier coefficients \(\hat{\mu}_n = \int_0^{2\pi} e^{-inx} d\mu(x) \) do not converge to 0 as \(n \to \infty \).

3. Prove that the integral
 \[
 \int_0^\infty \frac{2x^2 - 1}{x^4 + 5x^2 + 4} \, dx
 \]
 exists and find its value.

4. (a) Define the total variation of a function \(f : [0, 1] \to \mathbb{C} \).

 (b) Assuming that \(f \) has finite total variation, estimate the total variation of the function \(g : [0, 1] \to \mathbb{C}, g(x) = \int_0^1 f(xy) \, dy \), in terms of the total variation of \(f \).

 (c) If \(f \) is absolutely continuous, prove that \(g \) is absolutely continuous.

5. Suppose that \(f : \mathbb{R}^n \to \mathbb{R} \) and \(g : \mathbb{R}^n \to \mathbb{R} \) are integrable. Define the convolution of \(f \) and \(g \), denoted by \(f \ast g \), by
 \[
 f \ast g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy.
 \]

 1. If \(f \) and \(g \) are in \(L^1 \), then prove that \(f \ast g \) is in \(L^1 \).

 2. How are \((f \ast g)(x)\) and \((g \ast f)(x)\) related?

 3. Give an example of a smooth \(L^1 \) function \(f \) and a discontinuous \(L^1 \) function \(g \) with the property that \(f \ast g \) is smooth.

 4. Give an example of a discontinuous \(L^1 \) function \(f \) and a discontinuous \(L^1 \) function \(g \) with the property that \(f \ast g \) is continuous.

6. Suppose that \(f \) is analytic on the disk \(\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \} \), \(\epsilon > 0 \), and \(\lim_{n \to \infty} f(z_n) = 0 \) for any sequence \(z_n \in \mathbb{D} \) that converges to \(e^{i\theta} \) for some \(\theta \in (0, \epsilon) \). Prove that \(f \) is identically 0.