Analysis Exam, January 2021

Please put your name on your solutions, use $81 / 2 \times 11$ in. sheets, and number the pages.

1. For a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ with $x_{n} \neq 0$ for all n, we say that it is subexponential if

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|x_{n}\right| \leq 0
$$

If the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is subexponential, prove that the sequence $y_{n}=\sup _{1 \leq k \leq n}\left|x_{k}\right|$ is subexponential.
2. Let μ be a finite positive Borel measure on \mathbb{C} such that $\mu(\mathbb{C} \backslash \overline{\mathbb{D}})=0$. Prove that the function

$$
f(z)=\int \frac{1}{w-z} d \mu(w)
$$

is well-defined on $\mathbb{C} \backslash \overline{\mathbb{D}}$ and that $\lim _{z \rightarrow \infty} z f(z)=-\mu(\overline{\mathbb{D}})$.
3. Let $\Omega \subset \mathbb{C}$ be a bounded domain whose boundary is a finite union of Jordan curves. Let $f(z)$ be holomorphic in the domain Ω with a continuous extension to $\Omega \cup \partial \Omega$. Suppose that on $\partial \Omega$, we have that either $|\operatorname{Re} f|=2$ or $|\operatorname{Im} f|=2$. Show that either f is constant or there is a point $z_{0} \in \Omega$ so that $f\left(z_{0}\right)=1$.
4. Find the value of the improper integral

$$
\int_{0}^{\infty} \cos \left(t^{2}\right) d t=\lim _{L \rightarrow \infty} \int_{0}^{L} \cos \left(t^{2}\right) d t
$$

5. Fix $\alpha \in(0,1)$. The space $C^{\alpha}[0,1]$ is the space of continuous functions on $[0,1]$ with

$$
\|f\|_{C^{\alpha}}=\sup |f|+\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty
$$

equipped with norm $\|\cdot\|_{C^{\alpha}}$.
a) Show that the unit ball of $C^{\alpha}[0,1]$ has compact closure in $C[0,1]$.
b) Show that $C^{\alpha}[0,1]$ is of first category in $C[0,1]$, i.e., that its complement is generic in the sense of Baire category.
6. Consider the differential equation $y^{\prime \prime}=f(y) y$ on the domain $x \in[0, \infty)$. Suppose that $f: \mathbb{R} \rightarrow$ \mathbb{R} is strictly positive, monotone increasing, and continuous. Show there is a positive strictly decreasing solution $y(x)$ to this equation on the interval $[0, \infty)$ with $y(0)=1$.

