Analysis Exam, January 2021

Please put your name on your solutions, use 8 $1/2 \times 11$ in. sheets, and number the pages.

1. For a sequence $(x_n)_{n=1}^{\infty}$ with $x_n \neq 0$ for all n, we say that it is subexponential if

$$\limsup_{n \to \infty} \frac{1}{n} \log |x_n| \le 0$$

If the sequence $(x_n)_{n=1}^{\infty}$ is subexponential, prove that the sequence $y_n = \sup_{1 \le k \le n} |x_k|$ is subexponential.

2. Let μ be a finite positive Borel measure on \mathbb{C} such that $\mu(\mathbb{C} \setminus \overline{\mathbb{D}}) = 0$. Prove that the function

$$f(z) = \int \frac{1}{w - z} d\mu(w)$$

is well-defined on $\mathbb{C} \setminus \overline{\mathbb{D}}$ and that $\lim_{z \to \infty} zf(z) = -\mu(\overline{\mathbb{D}})$.

- 3. Let $\Omega \subset \mathbb{C}$ be a bounded domain whose boundary is a finite union of Jordan curves. Let f(z) be holomorphic in the domain Ω with a continuous extension to $\Omega \cup \partial \Omega$. Suppose that on $\partial \Omega$, we have that either $|\operatorname{Re} f| = 2$ or $|\operatorname{Im} f| = 2$. Show that either f is constant or there is a point $z_0 \in \Omega$ so that $f(z_0) = 1$.
- 4. Find the value of the improper integral

$$\int_0^\infty \cos(t^2) dt = \lim_{L \to \infty} \int_0^L \cos(t^2) dt.$$

5. Fix $\alpha \in (0,1)$. The space $C^{\alpha}[0,1]$ is the space of continuous functions on [0,1] with

$$||f||_{C^{\alpha}} = \sup |f| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty,$$

equipped with norm $\|\cdot\|_{C^{\alpha}}$.

a) Show that the unit ball of $C^{\alpha}[0,1]$ has compact closure in C[0,1].

b) Show that $C^{\alpha}[0,1]$ is of first category in C[0,1], i.e., that its complement is generic in the sense of Baire category.

6. Consider the differential equation y'' = f(y)y on the domain $x \in [0, \infty)$. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is strictly positive, monotone increasing, and continuous. Show there is a positive strictly decreasing solution y(x) to this equation on the interval $[0, \infty)$ with y(0) = 1.