Analysis Qualifying Exam, January 2022

Please put your name on your solutions, use different $81 / 2 \times 11$ in. sheets for different problems, and number the pages. In writing complete solutions, take care to give clear references to well-known results that you use.

We denote Lebesgue measure on \mathbb{R} by m.

1. Let $\left\{A_{n}\right\}$ be a sequence of measurable sets in the interval $[0,1]$ with $m\left(A_{n}\right) \geq \epsilon$ for some $\epsilon>0$.
(a) Show that there exists a point in infinitely many such A_{n}.
(b) Does there exist a point which is in all but finitely many A_{n} ?
2. Let f be a function that is analytic in some open set containing $\{z \in \mathbb{C}||z| \leq 1\}$. Suppose that

$$
|f(z)-z|<|z|
$$

on the unit circle.
(a) Show that $\left|f^{\prime}(1 / 2)\right| \leq 8$.
(b) How many zeros does f have inside the unit circle?
3. Fix $c \in(0,1)$. If a Borel set $E \subset \mathbb{R}$ obeys

$$
m(E \cap(a, b)) \leq c(b-a)
$$

for all $a, b \in \mathbb{R}$ with $a<b$, prove that $m(E)=0$.
4. Let f be an analytic function on the unit disk \mathbb{D} with $f(0)=f^{\prime}(0)=0$. Prove that

$$
g(z)=\sum_{n=1}^{\infty} f(z / n)
$$

defines an analytic function on \mathbb{D}. Prove that $g(z)=c f(z)$ for some constant $c \in \mathbb{C}$ if and only if $f(z)=\alpha z^{k}$ for some $\alpha \in \mathbb{C}$ and $k \in \mathbb{N}$.
5. Consider the initial value problem

$$
y^{\prime \prime}=2 y^{\prime} \tan x+y^{2}+2 x y+x^{2}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

defined near the origin.
(a) Show that there is an $x_{0}>0$ at which the solution has $y^{\prime}\left(x_{0}\right)=2$.
(b) Show that if $p(x)$ is a polynomial of degree 4 , then there exists $s>0$ so that for the solution to

$$
y^{\prime \prime}=2 y^{\prime} \tan x+y^{2}+2 x y+x^{2}+s p(x), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

there is a point x_{1} for which $y^{\prime}\left(x_{1}\right)=2$.
6. Let f be an entire function which satisfies $f(1)=1$ and $|f(z)|=1$ if $|z|=1$. Show that $f(z)=z^{k}$ for some integer $k \geq 0$.

