Analysis Exam, August 2023

Please put your name on your solutions, use different $81 / 2 \times 11$ in. sheets for different problems, and number the pages. In writing complete solutions, take care to give clear references to well-known results that you use.

1. Let $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$, and suppose that $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic, $f(1 / 3)=0$ and $f^{\prime}(1 / 3)=0$. Show that $|f(0)| \leq 1 / 9$.
2. For $r>0$, let B_{r} denote the radius r open ball in \mathbb{R}^{n} centered at the origin. Let $f: B_{2} \rightarrow \mathbb{R}$ be C^{3}. Prove that there exists a $C>0$ such that

$$
|f(x)-f(y)| \leq C\|x-y\|^{3}
$$

for all $x, y \in B_{1}$ satisfying $\nabla f(x)=\nabla f(y)=0$.
3. Find the value of the integral

$$
\int_{-\infty}^{+\infty} \frac{\log \left(1+x^{2}\right)}{4+x^{2}} d x
$$

4. (a) Suppose that $f \in L^{2}(\mathbb{R})$ with the Lebesgue measure, and x_{n} is a sequence of real numbers so that $x_{n} \rightarrow 0$. Define $f_{n}(x)=f\left(x+x_{n}\right)$. Show that f_{n} converges to f in L^{2}.
(b) Let X be a Lebesgue measurable set of positive Lebesgue measure. Show that the set of differences $X-X=\{x-y: x, y \in X\} \subset \mathbb{R}$ contains an open neighborhood of the origin.
5. Denote $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ and consider a sequence of holomorphic functions $f_{n}: \mathbb{D} \rightarrow \mathbb{D}$. Assume that $f_{n}(0) \rightarrow 0$ and $\left|f_{n}(1 / 2)\right| \rightarrow 1 / 2$ as $n \rightarrow \infty$. Prove that for each $w \in \mathbb{D}$, there exists n_{0} such that w is in the range of f_{n} for all $n \geq n_{0}$.
6. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function satisfying $f(x+1)=f(x)$ and $f(2 x)=f(x)$ for almost every $x \in \mathbb{R}$. Show that there exists a constant $c \in \mathbb{R}$ such that $f(x)=c$ for almost every $x \in \mathbb{R}$.
