RICE UNIVERSITY TOPOLOGY QUALIFYING EXAM - MAY 2019

This is a 4 hour, closed book, closed notes exam. There are six problems; complete all of them. Justify all of your work, as much as time allows. Write and sign the Rice honor pledge at the end of the exam.

Honor pledge: On my honor, I have neither given nor received any unauthorized aid on this exam.

- 1. Describe all connected 4-fold covers of $\mathbb{R}P^3 \# \mathbb{R}P^3$. For each cover, say whether it is regular or irregular and explain why. In addition, for each cover, say what the group of deck transformations is and explain why.
- 2. Let X be the space obtained from a solid octagon by identifying sides as shown Figure 1 below.

FIGURE 1

- (a) Give a CW-structure for X (be careful with the vertices) and describe the cellular chain complex.
- (b) Give a presentation for $\pi_1(X)$.
- (c) Calculate $H_n(X; \mathbb{Z}_3)$ and $H^n(X; \mathbb{Q})$ for all $n \ge 0$.
- (d) Prove or disprove: X has the homotopy type of a closed m-dimensional manifold for some $m \ge 0$ (not just m = 2).
- 3. Suppose Y is a topological space which is obtained from the union of a 2-sphere S^2 and a torus T by identifying the circle A to the circle A' and the circle B to the circle B' as shown below. Thus $S^2 \cap T \cong S^1 \sqcup S^1$.

- a) Use Mayer-Vietoris to calculate $H_i(Y;\mathbb{Z})$ for all *i*.
- b) Sketch or describe "geometric" representatives of the generators of $H_1(Y;\mathbb{Z})$ and $H_2(Y;\mathbb{Z})$.

c) Calculate
$$\pi_1(X)$$
.

d) Sketch or describe a connected 2-fold covering space of Y and the covering map.

- 4. Let X and Y be closed, connected, oriented 4-manifolds with $\pi_1(X) = \pi_1(Y) = 0$ and $H_2(X) \cong H_2(Y)$. Recall that closed means compact with no boundary.
 - (a) Prove that $H_2(X) \cong \mathbb{Z}^g$ for some $g \ge 0$.
 - (b) Show that $H_p(X) \cong H_p(Y)$ for all p.
 - (c) Show that there are closed, connected, orientable 4-manifolds X and Y that have $\pi_1(X) = \pi_1(Y) = 0$ and $H_p(X) \cong H_p(Y)$ for all p but which are not homotopy equivalent (prove that they are not homotopy equivalent).
 - (d) Prove that $\pi_2(X) \cong \pi_2(Y)$.
- 5. Give an example for each of the following or state that such an example does not exist. Give a brief justification in all cases. All spaces should be path connected CW-complexes.
 - (a) Two spaces with isomorphic π_1 but non-isomorphic integral homology groups.
 - (b) Two spaces with isomorphic π_1 and isomorphic integral homology groups that are NOT homotopy equivalent.
 - (c) Two spaces with isomorphic H_1 and π_n for all $n \ge 2$ that are NOT homotopy equivalent.
 - (d) A finite CW complex with H_n not finitely generated for some $n \ge 2$.
 - (e) A finite CW complex with π_n not finitely generated for some $n \ge 2$.
 - (f) A connected, closed, orientable 3-dimensional manifold M with $H_2(M) \cong \mathbb{Z}_3$.
- 6. Let $F: N \to M$ be a smooth map of smooth manifolds N and M. Suppose that F is transverse to an embedded submanifold $X \subset M$ and let $W = F^{-1}(X)$. For each $p \in W$, show that
 - $T_pW = (dF_p)^{-1}(T_{F(p)}X)$. Conclude that if two embedded submanifolds $X, X' \subset M$ intersect transversely, then $T_p(X \cap X') = T_pX \cap T_pX'$ for every $p \in X \cap X'$.