Parameterizations to Know

Curves

1. Circle of radius r centered at the origin in the xy-plane:
 $$ x = r \cos \theta, \quad y = r \sin \theta, \quad 0 \leq \theta \leq 2\pi $$
 Orientation: Counterclockwise

2. Ellipse given by $x^2/a^2 + y^2/b^2 = 1$ in the xy-plane:
 $$ x = a \cos \theta, \quad y = b \sin \theta, \quad 0 \leq \theta \leq 2\pi $$
 Orientation: Counterclockwise

3. Line Segment from P_0 to P_1:
 Let r_0 and r_1 denote the position vectors for P_0 and P_1 respectively. Then the line segment is given by
 $$ \vec{r}(t) = (1-t)\vec{r}_0 + t\vec{r}_1, \quad 0 \leq t \leq 1. $$
 Alternatively, let $P_0 = (x_0, y_0, z_0)$ and let $\overrightarrow{P_0P_1} = (a, b, c)$. Then the line segment is given by
 $$ x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct, \quad 0 \leq t \leq 1. $$
 Orientation: From P_0 to P_1.

4. General function $f(x) = y$, $a \leq x \leq b$ in the xy-plane:
 $$ x = x, \quad y = f(x), \quad a \leq x \leq b $$
 Orientation: From the point $(a, f(a))$ to the point $(b, f(b))$, i.e. in the direction of increasing x-value.

Surfaces

1. Sphere of radius a centered at the origin:
 $$ x = a \sin \phi \cos \theta, \quad y = a \sin \phi \sin \theta, \quad z = a \cos \phi, \quad 0 \leq \phi \leq \pi, \quad 0 \leq \theta \leq 2\pi $$
 Orientation: $r_\phi \times r_\theta = \sin^2 \phi \cos \theta \hat{i} + \sin^2 \phi \sin \theta \hat{j} + \sin \phi \cos \phi \hat{k}$ points outward

2. Surfaces of revolution:
 Let $y = f(x)$, $a \leq x \leq b$ and rotate it around the x-axis. Then we can parameterize the resulting surface by
 $$ x = x, \quad y = f(x) \cos \theta, \quad z = f(x) \sin \theta, \quad a \leq x \leq b, \quad 0 \leq \theta \leq 2\pi. $$
 Orientation: $r_x \times r_\theta$ points outward

3. General function $z = f(x, y)$, for (x, y) in some closed, bounded domain D:
 $$ x = x, \quad y = y, \quad z = f(x, y), \quad (x, y)$ in $D $$
 Orientation: $r_x \times r_y = -f_x \hat{i} - f_y \hat{j} + \hat{k}$ points outward