Part A: All Students

Hand in the following exercises from Chapter 11 of Artin’s book.

3.4 Observe that \(x - 1 \mapsto t \) so that \(f := (x - 1)^3 - 1 - y \) is in the kernel \(K \). I claim that \(K = \langle f \rangle \).

Clearly, \(\langle f \rangle \subseteq K \) since any multiple of \(f \) is also mapped to 0. Suppose \(g \in K \) is in the kernel. Since \(f \) is monic in \(y \), we can perform division with remainder to get \(g = fg + r \) where \(r \) has degree 0 in \(y \) so it must be a polynomial in \(x \) only, \(r = r(x) \). By hypothesis \(r(x) \mapsto r(t + 1) = 0 \), which happens only when \(r = 0 \). Hence \(f \) divides \(g \) so that \(g \in \langle f \rangle \). Hence \(K \subseteq \langle f \rangle \), so we have \(K = \langle f \rangle \).

Let \(I \) be an ideal which contains \(K = \langle f \rangle \). Then \(I \cap \mathbb{C}[x] \subseteq \mathbb{C}[x] \) is also an ideal, and by Prop. 11.3.22, \(\mathbb{C}[x] \) is a principle ideal so there exists \(g \in \mathbb{C}[x] \) such that \(I \cap \mathbb{C}[x] = \langle g \rangle \). I claim \(I = \langle f, g \rangle \).

Clearly we just need to prove \(I \subseteq \langle f, g \rangle \). Let \(h \in I \) and as before we can write \(h = fq + r \) for some polynomial \(r = r(x) \). Then \(r \in I \cap \mathbb{C}[x] \) so that \(r \in \langle g \rangle \) by hypothesis. Hence \(fq + r \in \langle f, g \rangle \) so \(h \in \langle f, g \rangle \).

3.5 (a) It’s clear from the definition that \((f + g)' = f' + g'\). Hence for the first part it suffices to prove the statements when \(f, g \) are monomials. Let \(f(x) = a_nx^n \) and \(g(x) = b_mx^m \).

\[
(fg)' = (a_n b_m x^{n+m})' = (n + m) a_n b_m x^{n+m-1} = na_n x^{n-1} b_m x^m + ma_n x^n b_m x^{m-1} = f'g + fg'
\]

For the second part we can assume \(f(x) = a_n x^n \) is a monomial and \(g(x) = b_m x^m + \cdots + b_1 x + b_0 \). We have \((f \circ g)' = (a_n g^n)'\). Note \(g^n \) is a product of many \(g \)'s, so apply the product rule inductively to get \((a_n g)^n' = na_n g^{n-1} g'\). Since \(f'(x) = na_n x^{n-2} \), we have \(f' \circ g = na_n g^{n-1} \) so the result follows.

(b) \(\Rightarrow \) Suppose \(\alpha \) is a multiple root of \(f \). Then we can write \(f(x) = (x - \alpha)^n g(x) \) for some \(g \in F[x] \) such that \(g(\alpha) \neq 0 \) and integer \(n > 1 \). By (a), \(f'(x) = n(x - \alpha)^{n-1} g(x) + (x - \alpha)^n g'(x) \) so it’s clear \(f'(\alpha) = 0 \).

\(\Leftarrow \) Suppose \(\alpha \) is a common root of both \(f, f' \). Again write \(f(x) = (x - \alpha)^n g(x) \) where this time we only know \(n \geq 1 \) a priori. But then \(f'(x) = n(x - \alpha)^{n-1} g(x) + (x - \alpha)^n g'(x) \) has \(\alpha \) as a root if and only if \(n > 1 \). Hence \(n > 1 \) we get a multiple root.

3.8 Let \(f : R \to R, f(x) = x^p \) be the Frobenius map. Then \(f(1) = 1^p = 1, f(xy) = (xy)^p = x^py^p = f(x)f(y) \), and finally

\[
f(x + y) = (x + y)^p = \sum_{i=0}^{p} \binom{p}{i} x^i y^{p-i} = x^p + y^p = f(x) + f(y)
\]

where the middle equality is due to the fact that \(p \mid \binom{p}{i} \) whenever \(i \neq 0, p \). Hence \(f \) is a homomorphism.

3.11 False. Let \(R = \mathbb{Z} \) and \(I = \langle 2x \rangle \). Then \(n = 1 \) but \(I \) does not contain any monic degree one polynomial (the leading coefficient is always even).

3.12 We have \(0 = 0 + 0 \in I + J \) and suppose \(a, b \in I + J \) where \(a = u + v, b = x + y \) and \(u, x \in I, v, y \in J \). Then \(a + b = (u + x) + (v + y) \in I + J \) and if \(r \in R \), then \(ra = ru + rv \in I + J \). Hence \(I + J \) is an ideal.
3.13 We have \(0 \in I \cap J\) and suppose \(a, b \in I \cap J\) so \(a + b \in I\) and \(a + b \in J\). Then \(a + b \in I \cap J\) and if \(r \in R\), then \(ra \in I \cap J\). Hence \(I \cap J\) is an ideal.

Consider \(R = \mathbb{Z}[t]\) and \(I = (3, t), J = (2, t)\). Then \(3t, 2t \in \{xy \mid x \in I, y \in J\}\) but \(3t - 2t = t \notin \{xy \mid x \in I, y \in J\}\) since \(t\) is irreducible and \(1 \notin I, J\).

We have \(0 \in IJ\) and suppose \(a, b \in IJ\). Then \(a + b \in IJ\) since the sum of two finite sums of products of elements in \(I, J\) is still a finite sum of products, and if \(r \in R\), then \(ra \in IJ\) since \(r \sum x \nu y \nu = \sum (rx \nu) y \nu\).

Note that \(IJ \subseteq I \cap J\) since any product \(xy\) belongs to both \(I\) and \(J\). However equality does not always hold, for example consider \(R = \mathbb{Z}, I = J = (2)\).

Part B: Math 563 Students

1. Let \(G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}\) be the Klein group. Write out the regular representation \(\rho: G \to \text{GL}(\mathbb{C}^4)\), using the standard basis of \(\mathbb{C}^4\).

2. Let \(G\) be a finite abelian group. Show that the number of distinct (i.e. pairwise non-isomorphic) representations of degree 1 of \(G\) equals the order of \(G\).

1. Let \(G = \{1, a, b, ab\}\) represent a basis for \(\mathbb{C}^4\). Then

\[
\rho(1) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\rho(a) = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
\rho(b) = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

\[
\rho(ab) = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

2. A degree 1 representation of \(G\) is a morphism \(\rho: G \to \mathbb{C}^\times\). Suppose \(G \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_s\mathbb{Z}\) with generators \(a_1, \ldots, a_s\). Then \(\rho\) is uniquely determined by \(\rho(a_i)\) for \(i = 1, \ldots, s\). Observe \(\rho(a_i) = e^{2\pi ib_i/n_i}\) where \(b_i = 1, \ldots, n_i\). There are \(n_i\) choices for each \(b_i\) so gives us a total of \(|G|\) many representations. We show none of these are isomorphic. Let \(\rho, \rho'\) be two representations and \(\alpha: \mathbb{C} \to \mathbb{C}\) an isomorphism from \(\rho\) to \(\rho'\). Then \(\alpha(\rho(a_i)x) = b_i\alpha(x)\) and \(\rho'(a_i)\alpha(x) = b'_i\alpha(x)\). Hence \(b_i = b'_i\) for each \(i\) so \(\rho = \rho'\).