Math 463/563 - Homework 9

Part A: All Students

1.1 Let $r \in R$ be a nonzero element. The multiplication by r map $R \to R$ given by $x \mapsto rx$ is injective because R is an integral domain. Considered as vector spaces over F, we get that this map must be an isomorphism of finite dimensional vector spaces (since they have the same dimension). In particular, it is a bijection so there is some $x \in R$ such that $rx = 1$ proving that r has an inverse.

3.1 Since we have the inclusions $F \subseteq F(\alpha^2) \subseteq F(\alpha)$, we know that the degree of α^2 must divide 5. If it is one, then $\alpha^2 \in F$ which means that the degree of α is either 1 or 2, a contradiction. Hence α^2 has degree 5, i.e., $F(\alpha^2) = F(\alpha)$.

3.2 First note that the polynomial is irreducible over \mathbb{Q} by Eisenstein’s criterion. Let α be a root of the polynomial, so that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$. We have that the composite degree $[\mathbb{Q}(\alpha, \sqrt{2}) : \mathbb{Q}] \leq 12$. On the other hand it is divisible by $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 3$ and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$. Hence we must have $[\mathbb{Q}(\alpha, \sqrt{2}) : \mathbb{Q}] = 12$ which means $[\mathbb{Q}(\alpha, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 4$, i.e., the polynomial is irreducible over $\mathbb{Q}(\sqrt{2})$.

3.3 The minimal polynomial for ζ_5 over \mathbb{Q} is $x^4 + x^3 + x^2 + x + 1$. Hence ζ_5 has degree 4 over \mathbb{Q}. Similarly, the degree of ζ_7 is 6. Since 4 does not divide 6, we cannot have $\zeta_5 \in \mathbb{Q}(\zeta_7)$.

3.7a Suppose that $i \in \mathbb{Q}(\sqrt{-2})$. Then $\sqrt{2} \in \mathbb{Q}(\sqrt{-2})$ as well so $\mathbb{Q}(\sqrt{2}, i) \subseteq \mathbb{Q}(\sqrt{-2})$. Since they both have degree 4 over \mathbb{Q}, we have $\mathbb{Q}(\sqrt{2}, i) = \mathbb{Q}(\sqrt{-2})$. Note that $(1 + i)/\sqrt{2} \in \mathbb{Q}(\sqrt{2}, i)$ is a 4th root of -1. In fact, every 4th root of -1 is in this extension (they all differ by a multiple of ± 1 or $\pm i$), therefore $\sqrt{2} \in \mathbb{Q}(\sqrt{-2})$ as well. But $\sqrt{2}$ also has degree 4, hence $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(i, \sqrt{2})$, which is a contradiction, since the former contains only real numbers.

3.8 Consider the polynomial $x^2 - (\alpha + \beta)x + \alpha \beta$ over $\mathbb{Q}(\alpha + \beta, \alpha \beta)$. Note that α and β are roots of this polynomial, hence α and β are algebraic over $\mathbb{Q}(\alpha + \beta, \alpha \beta)$. So each extension in the chain $\mathbb{Q} \subseteq \mathbb{Q}(\alpha + \beta, \alpha \beta) \subseteq \mathbb{Q}(\alpha, \beta)$ is of finite degree. Hence α, β are also algebraic.

4.1 First note that the degree of α, α^2, γ are all the same. Since $(x^3 - x - 1)(x^3 - x + 1) = x^6 - 2x^4 + x^2 - 1$ we get that α^2 has minimal polynomial $x^3 - 2x^2 + x - 1$. Thus γ has minimal polynomial $(x - 1)^3 - 2(x - 1)^2 + (x - 1) - 1$.

4.2 First we compute

$$
\begin{align*}
\alpha &= \sqrt{3} + \sqrt{5} \\
\alpha^2 &= 8 + 2\sqrt{15} \\
\alpha^3 &= 18\sqrt{3} + 14\sqrt{5} \\
\alpha^4 &= 124\sqrt{3} + 32\sqrt{15},
\end{align*}
$$

which gives the relation $\alpha^4 - 16\alpha^2 + 4 = 0$.

(a) Since α is a root of $f(x) = x^4 - 16x^2 + 4$, and f is irreducible over \mathbb{Q}, f is the minimal polynomial for α over \mathbb{Q}. Notice that this shows that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{3}, \sqrt{5})$ since $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ has degree at most 4 over \mathbb{Q}, but it contains $\mathbb{Q}(\alpha)$, which has degree 4 over \mathbb{Q}.
(b) Notice that \(\alpha \) is a root of \(f(x) = (x - \sqrt{5})^2 - 3 \). Moreover, since \(\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{3}, \sqrt{5}) \), we know that \(\alpha \) has degree 2 over \(\mathbb{Q}(\sqrt{5}) \), so \(f \) must be its minimal polynomial over \(\mathbb{Q}(\sqrt{5}) \).

(c) By writing an arbitrary element of \(\mathbb{Q}(\alpha) \) as \(a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15} \) with \(a, b, c, d \in \mathbb{Q} \), and computing \((a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15})^2 \), one can show that \(\sqrt{10} \in \mathbb{Q}(\alpha) \). Hence \(\mathbb{Q}(\alpha, \sqrt{10}) \) has degree 2 over \(\mathbb{Q}(\alpha) \), so \(\alpha \) still has degree 4 over \(\mathbb{Q}(\sqrt{10}) \). Therefore it has the same minimal polynomial as in (a).

(d) Notice that \(\alpha \) has degree 2 over \(\mathbb{Q}(\sqrt{15}) \), since \(\mathbb{Q}(\sqrt{15}) \) has degree 2 over \(\mathbb{Q} \) and is contained in \(\mathbb{Q}(\alpha) \), which has degree 4 over \(\mathbb{Q} \). Moreover, it is clearly a root of \(f(x) = x^2 - 8 - 2\sqrt{15} = 0 \), so this must be its minimal polynomial.

Part B: Math 563 Students

3.1 Let \(G \) be a finite abelian group and \(V \) an irreducible representation with \(\rho: G \to \text{GL}(V) \). Given \(s \in G \), \(\rho_t \rho_s = \rho_{st} = \rho_s \rho_t \) for any \(t \in G \) since \(G \) is abelian. By Schur’s lemma, \(\rho_s \) is a homothety, i.e., \(\rho_s = \lambda_s \cdot I \) for some constant \(\lambda_s \). Since this is true for all \(s \in G \), \(V \) is irreducible if and only if \(V \) is 1 dimensional, i.e., of degree 1.

3.2 (a) For each \(s \in C \), we have \(\rho_s = \lambda_s \cdot I \) by Schur’s Lemma. Since \(|C| < \infty \), we have \(\rho_s^g = 1 \) for some positive integer \(g \), so that \(\lambda_s \) is a root of unity. Thus \(|\chi(s)| = |\lambda_s n| = n \).

(b) \(\sum_{s \in C} |\chi(s)|^2 \leq \sum_{s \in G} |\chi(s)|^2 = g \). By (a), \(cn^2 \leq g \) so \(n^2 \leq g/c \).

(c) \(C \) is an abelian subgroup of \(G \). If \(\rho_s \neq 1 \) for \(s \neq 1 \), then \(\lambda_s \neq 1 \). So \(\lambda_s \neq \lambda_t \) for \(s \neq t \). Moreover \(\lambda_s^c = 1 \) implies \(\lambda_s \) is a \(c \)-th root of unity. It follows that the elements of \(C \) corresponds to distinct roots of unity, compatible with the group structure under multiplication, so \(C \simeq \mathbb{Z}/c\mathbb{Z} \).